

Studies of new Higgs boson interactions through nonresonant HH production in the $b\bar{b}\gamma\gamma$ final state in the pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Ligang Xia (Nanjing University)

第十届中国LHC物理会议(CLHCP2024 青岛)

Nov 13 – 17, 2024 山东省青岛市鳌山湾 (Aoshan Bay, Qingdao, Shandong) Asia/Shanghai timezone

Motivation (I)

• In SM, spontaneous eletroweak symmetry breaking follows from the special shape of the Higgs potential.

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{HHH}vH^{3} + \frac{1}{4}\lambda_{HHHH}H^{4}$$

2

- SM prediction is $\lambda_{HHH} = \lambda_{HHHH} = \frac{1}{2} \left(\frac{m_H}{v}\right)^2 \approx \frac{1}{8}$.
- Experimentally, the only direct way to probe Higgs self coupling is to study the HH production.
- Two diagrams contribute with destructive interference.

Motivation (II)

- We also want to constraint the strength of the quartic couplings between two Higgs bosons and two W or Z bosons, g_{HHVV} .
- This can be readily studied in the VBF production of HH events.
- In SM, the prediction is $g_{HHVV} = g_{HVV}/2\nu$.
- Three types of diagrams contribute coherently.

Event Selection

- bbyy channel benefits from high branching fraction of H→ bb and precise Higgs mass reconstruction through H→ yy.
- Preselection:
 - Pass diphoton triggers
 - Two photon candidates with pT>35%m(yy) or 25%m(yy).
 - Two b-tagged central jets using DL1r b-tagging algorithm at 77% WP.
 - Veto events with 6 or more central jets or 1 or more leptons to suppress ttH and inclusive backgrounds.
 - Focus on events with 105<m(yy)<160 GeV
- Signal strength obtained from fitting to m(yy) spectra.

Event Categorization

$$m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$$

- The Higgs self-coupling strength modifier, κ_{λ} , is mostly sensitive to the m(HH) distribution.
- We split events into Low and High m*(HH) regions (< or >360 GeV).
- In each region, a BDT model is trained to suppress the continuum background (yy+jets) and the peaking background (single Higgs).
- m(bb) is the most important feature in the BDT model.
- Further design 4+3 final categorization to maximize signal significance.

Fits and Signal strength extraction

- Signal strength is obtained via fitting the m(yy) spectra.
 - Signal and peaking background are modeled using a DSCB function.
 - Background is modeled using an empiric smooth function, selected using the strategy of the spurious signal test.

Results

- No evidence of signal is found!
- The upper limit of HH signal strength @ 95 CL is **4 of SM** preduction.
- The observed constraint @95 CL is [-1.4, 6.9] for κ_{λ} and [-0.5, 2.7] for κ_{2V} .

HEFT interpretation

- Effective field theory (EFT) extension to the SM.
- Focus on 3 Wilson coefficients: C_{hhh}, C_{tthh}, C_{gghh}
- Consider 7 benchmark models

Chhh

Benchmark	C_{hhh}	C_{tth}	c_{ggh}	c _{gghh}	C _{tthh}
SM	1.00	1.00	0	0	0
1	5.11	1.10	0	0	0
2	6.84	1.03	-1/3	0	1/6
3	2.21	1.05	1/2	1/2	-1/3
4	2.79	0.90	-1/3	-1/2	-1/6
5	3.95	1.17	1/6	-1/2	-1/3
6	-0.68	0.90	1/2	1/4	-1/6
7	-0.10	0.94	1/6	-1/6	1

Benchmark 4 model is excluded for the first time @ 95 CL.

Chhh

SMEFT interpretation

- Another EFT extension to the SM
- Consider only 2 dim-6 operators: cH and cHbox, others not sensitive.
- Include their contributions to both HH and H cross sections
- Consider linear + quadratic terms

 $(H^{\dagger}H)^3$ and $(H^{\dagger}H)\Box(H^{\dagger}H)$

Wilson coefficient	95% CL Observed		
CH	[-14.4, 6.2]		
CH□	[- 9.4, 10.2]		

Very-near future prospect for bbyy

- Run2 + Run3: larger luminosity (expeted 350 ifb at 13.6 TeV)
- Better b-tagging algorithm: DL1r \rightarrow GN2
- More photon ID working points (+medium)
- Great efforts on finer event categorization
- Early results expected in 2025

Summary

- Search for nonresonant HH production using the bbyy final state based on full Run2 dataset
- Obtain the stringent constraint [-1.4, 6.9]
 for κ_λ and [-0.5, 2.7] for κ_{2V}
- Interpret our measurements in HEFT and SMEFT frameworks
- More exciting results will come soon with Run2 + Run3 datasets

