

Evidence of CP violation in $B^\pm \to J/\psi \pi^\pm \mbox{ decays}$

Manshu Li, Jie Wu

Central China Normal University

CLHCP 2024, Qingdao, 14-17th November 2024

Probing CP violation in $B^+ \rightarrow J/\psi \pi^+$

 $\begin{array}{lll} A(B^+ \to J/\psi\pi^+) \approx & \lambda^3 \left(T + P_c - P_t\right) & + & \lambda^3 \left(P_u - P_t\right) e^{i\gamma} \\ A(B^+ \to J/\psi K^+) \approx & \lambda^2 \left(T + P_c - P_t\right) & + & \lambda^4 \left(P_u - P_t\right) e^{i\gamma} \end{array}$

- > The $B^+ \rightarrow J/\psi \pi^+$ decay, proceeding via a $b \rightarrow c \bar{c} d$ transition, is enriched with penguin contributions
 - Expect O(1%) direct CP violation [PRD 49 (1994) 5904, PRD 52 (1995) 242]
- Ideal place to look for yet unobserved direct CP violation in B decays to charmonia
- → Important control channel to understand penguin effects that affect sin2β measurement in $B^0 \rightarrow J/\psi K^0$ [PRD 79 (2009) 014030, JHEP 03 (2015) 145]

Previous study of $B^+ o J/\psi \pi^+$

> LHCb measured its branching fraction and CP violation relative to $B^+ \rightarrow J/\psi K^+$ using Run 1 data [JHEP 03 (2017) 036]

 $\mathcal{R}_{\pi/K} \equiv \frac{\mathcal{B}(B^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psiK^+)}$ = (3.83 ± 0.03 ± 0.03)×10⁻² $\Delta A^{CP} \equiv A^{CP}(B^+ \to J/\psi\pi^+) - A^{CP}(B^+ \to J/\psiK^+)$ = (1.82 ± 0.86 ± 0.14)×10⁻²

where
$$A^{CP}(B^+ \longrightarrow J/\psi h^+) = \frac{\Gamma(B^- \to J/\psi h^-) - \Gamma(B^+ \to J/\psi h^+)}{\Gamma(B^- \to J/\psi h^-) + \Gamma(B^+ \to J/\psi h^+)}$$

> This analysis updates $\mathcal{R}_{\pi/K}$ and ΔA^{CP} using data taken in 2016-2018 (5.4 fb⁻¹)

Trigger and preselection

➤ Trigger

- ➢ Combine J/ψ and pion/kaon candidates to form $B^{\pm} → J/\psi h^{\pm}$ candidates
- ► Require $\cos\theta_h < 0$ to separate $B^+ \rightarrow J/\psi\pi^+$ and $B^+ \rightarrow J/\psi K^+$ θ_h : angle between \vec{p}_h in *B* rest frame and \vec{p}_B in the lab frame
- Remove edge regions with large raw asymmetries by requiring

 $p_x \le 0.294(p_z - 2 \text{ GeV})$

MVA and PID selections

- Train a BDT for each mode and each year to suppress combinatorial background, using kinematic information
 - Optimize BDT cut to maximize significance of $B^+ \rightarrow J/\psi \pi^+$
 - Choose the same BDT efficiency for $B^+ \rightarrow J/\psi K^+$
 - Rejecting >90% of combinatorial background, with signal efficiency above 95%

- Use hadron PID to suppress misID background
 - ✓ π^{\pm} : probNNk < 0.6 && probNNpi > 0.5, $\epsilon \approx 96\%$
 - ✓ K^{\pm} : probNNk > 0.6 && probNNpi < 0.5, $\epsilon \approx 92\%$
 - ✓ Reject >97% cross-feed background

$B^{\pm} ightarrow J/\psi \pi^{\pm}$ mass fits

> Simultaneously fit $B^+ \& B^-$ mass distributions for each year

(Merged plots for data in three years)

 $B^{\pm} \rightarrow J/\psi \pi^{\pm}$: Hypatia, tail parameters fixed from MC, $\mu \& \sigma$ free $B^{\pm} \rightarrow J/\psi K^{\pm}$: DSCB, tail parameter fixed from MC, $\mu \& \sigma$ free **Partially reconstructed bkg:** Argus convolved with Gaussian **Combinatorial bkg:** exponential

$B^{\pm} \rightarrow J/\psi K^{\pm}$ mass fits

> Simultaneously fit B^+ & B^- mass distributions for each year

(Merged plots for data in three years)

 $B^{\pm} \rightarrow J/\psi K^{\pm}$: Hypatia, tail parameter fixed from MC, $\mu \& \sigma$ free **Partially reconstructed bkg**: Argus convolved with Gaussian **Combinatorial bkg**: exponential

Branching fraction ratios

- Signal yields obtained from mass fits
- Efficiency ratios mainly obtained from simulation

$$\mathcal{R}_{\pi/K} \equiv \frac{\mathcal{B}(B^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = \frac{N_\pi}{N_K} \times \frac{\epsilon_K}{\epsilon_\pi}$$

Year by year

$$\mathcal{R}_{\pi/K} = \begin{cases} (3.900 \pm 0.040 \pm 0.024) \times 10^{-2} & \text{for } 2016 \\ (3.858 \pm 0.039 \pm 0.022) \times 10^{-2} & \text{for } 2017 \\ (3.805 \pm 0.037 \pm 0.023) \times 10^{-2} & \text{for } 2018, \end{cases}$$

Run 2 average, using the Best Linear Unbiased Estimator method to combine

 $\mathcal{R}_{\pi/K} = (3.852 \pm 0.022 \pm 0.018) \times 10^{-2}$

> Compatible with Run 1 result $\mathcal{R}_{\pi/K} = (3.83 \pm 0.03 \pm 0.03) \times 10^{-2}$

Method to measure ΔA^{CP}

CP asymmetries

 $\succ CP asymmetry difference$ $\Delta A^{CP} \equiv A^{CP} (B^{\mp} \rightarrow J/\psi \pi^{\mp}) - A^{CP} (B^{\mp} \rightarrow J/\psi K^{\mp})$ $= \Delta a^{raw} - \Delta a^{prod} - \Delta a^{det} - \Delta a^{PID}$

CP and nuisance asymmetries

Raw asymmetries from mass fits

Note the tighter PID cuts used in Run 1 analysis resulted in a slightly larger PID asymmetry.

Run 2 average

 $\Delta A^{CP} = (1.29 \pm 0.49 \pm 0.10) \times 10^{-2}$

Compatible with Run 1 result

Systematic uncertainties

	Branching fraction ratio			CP asymmetry difference		
	2016	2017	2018	2016	2017	2018
	[%]	[%]	[%]	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$
Mass fit	0.22	0.16	0.21	0.04	0.06	0.04
Trigger efficiency	0.40	0.39	0.37	-	-	-
Material budget	0.30	0.30	0.30	-	-	-
Simulation correction	0.17	0.15	0.14	_	-	-
PID	0.29	0.22	0.29	0.06	0.07	0.08
Detection asymmetry	-	-	-	0.05	0.05	0.05
Production asymmetry	-	-	-	0.02	0.02	0.02
Total	0.64	0.58	0.61	0.09	0.11	0.11

Relative uncertainty for $\mathcal{R}_{\pi/K}$ and absolute uncertainty for ΔA^{CP}

- No significant difference between mag-up and down
- No significant trend observed when tightening BDT cuts

Combination with Run 1 results

 $R_{\pi/K} = (3.846 \pm 0.018 \pm 0.018) \times 10^{-2}$ $\Delta A^{CP} = (1.42 \pm 0.43 \pm 0.08) \times 10^{-2}$

First evidence for direct CP violation in beauty decays to charmonium final states (3.2 σ)

Estimation of $A^{CP}(B^+ \rightarrow J/\psi \pi^+)$

Using the LHCb measurement

 $A^{CP}(B^+ \rightarrow J/\psi K^+) = (0.09 \pm 0.27 \pm 0.07) \times 10^{-2}$ [Phys. Rev. D 95, 052005 (2017)]

and taking into account the correlations, we get

$$A^{CP}(B^+ \to J/\psi \pi^+) = (1.51 \pm 0.50 \pm 0.11) \times 10^{-2}$$

c.f. PDG average dominated by LHCb Run 1 result

 $A^{CP}(B^+ \to J/\psi \pi^+) = (1.8 \pm 1.2) \times 10^{-2}$

Constraints on penguin parameters

- ➤ Amplitudes for $B^+ \to J/\psi h^+ (h = \pi, K)$: $A(B^+ \to J/\psi \pi^+) = -\lambda \mathcal{A}(1 + ae^{i\theta}e^{i\gamma}),$ $A(B^+ \to J/\psi K^+) = (1 - \lambda^2/2)\mathcal{A}'(1 + \epsilon a'e^{i\theta'}e^{i\gamma}),$
- > SU(3) flavour symmetry: $a = a', \ \theta = \theta'.$

Conclusions

- Measurements of CP asymmetry diff. and BF ratio between B⁺ → J/ $\psi\pi^+$ & B⁺ → J/ ψ K⁺ using Run 2 data $\Delta A^{CP} = (1.29 \pm 0.49 \pm 0.10) \times 10^{-2}$ $\mathcal{R}_{\pi/K} = (3.851 \pm 0.022 \pm 0.023) \times 10^{-2}$
- Combination with Run 1 results gives 1st evidence for direct CP violation in beauty to charmonium decays!

 $\Delta A^{CP} = (1.42 \pm 0.43 \pm 0.08) \times 10^{-2}$ $\mathcal{R}_{\pi/K} = (3.846 \pm 0.018 \pm 0.018) \times 10^{-2}$

Backup slides

Raw charge asymmetries

Raw asymmetries from mass fits

	2016	2017	2018
a_{π}^{raw} (%)	0.91 ± 0.85	0.50 ± 0.85	1.42 ± 0.78
$a_K^{ m raw}$ (%)	-1.35 ± 0.17	-1.12 ± 0.17	-1.07 ± 0.15
⊿a ^{raw} (%)	2.26 ± 0.86	1.62 ± 0.87	2.49 ± 0.80

The $B^+ \rightarrow J/\psi K^+$ sample is weighted to match the $B^+ \rightarrow J/\psi \pi^+$ sample in p_T and η distributions, in order to cancel the B^-/B^+ production asymmetry

Sources of systematic uncertainties

- > Mass fits: alternative signal and bkg. descriptions; different shape and position parameters for B^+ and B^-
- Trigger efficiency: difference of L0 efficiency ratios from simulation and from data, using TISTOS method
- > K/ π interaction: varying relevant detector material by 10%
- > PID eff. and asymmetry: uncertainties of PID efficiency ratio and Δa^{PID} estimates from PIDCorr
- > Detection asymmetry: uncertainty of Δa^{det} estimate
- ➢ Production asymmetry: difference of ΔA^{CP} with and w/o matching B⁺ → J/ψK⁺ and B⁺ → J/ψπ⁺ kinematics

Dependence on magnetic polarity

No significant difference between mag-up and down

Uncertainties are statistical only

Dependence on BDT requirements

> No significant trend observed when tightening BDT cuts

\mathbf{h}					
2016		3.90±0.04			
2016 Tight 5%		3.90±0.04			
2016 Tight 10%	—	3.91±0.04			
2017		3.86±0.04			
2017 Tight 5%		3.85±0.04			
2017 Tight 10%	⊢	3.83±0.04			
2018	—	3.81±0.04			
2018 Tight 5%	—	3.82±0.04			
2018 Tight 10%		3.80±0.04			
3.6	3.8	4 4.2			
	Branching fraction ratio [10 ⁻²]				

Uncertainties are statistical only