

第十届中国LHC物理会议 The 10th China LHC Physics Conference

Amplitude analysis of $B^+ \rightarrow D^+ \overline{D}^0 K_S^0$ decays

Shuang Zheng on behalf of LHCb collaboration Peking University

Shuang Zheng

Amplitude analysis of $B^+ \to D^+ \overline{D}{}^0 K_S^0$ decays

2024/11/14

- Introduction
- Analysis Method
- Analysis Results
- Summary

Introduction

Exotics with single heavy quark

Heavy quark effective theory (HQET)

$$\mathcal{L}_Q = ar{Q}(iD\!\!\!/ - m_Q)Q = ar{Q}_v(iv \cdot D)Q_v + \mathcal{O}\left(m_Q^{-1}
ight)$$

Abundant symmetries:

- Heavy quark spin symmetry (HQSS)
- Heavy quark flavor symmetry (HQFS)

Experimental information:

- $T_{b\bar{s}}(5568)^+ (b\bar{s}u\bar{d})$ PhysRevD.97.092004
- $T^*_{cs0}(2870)^0$, $T^*_{cs1}(2900)^0$ ($\bar{c}\bar{s}ud$) PhysRevD.102.112003

 $T_{cs0}^{*}(2870)^{0}\& T_{cs1}^{*}(2900)^{0}$

• Discovered by LHCb in $B^+ \rightarrow D^+ D^- K^+$ decays ($D^- K^+$ final state)

Charge conjugate implied

Theoretical interpretations

 $T_{cs0}^{*}(2870)^{0}(0^{+})$

- Close to D^*K^* threshold
- Most popular interpretation
 is *D***K** hadron molecule

- $T_{cs1}^{*}(2900)^{0}(1^{-})$
- Compact tetraquark
- Isospin eigenstate
 - P-wave D^*K^* hadron molecule
- with dipole structure
 - Kinematical effects (cusp, TS)

Related to potential isospin breaking

 $B^+ \to D^+ \overline{D}{}^0 K_{\rm S}^0$ decays

 $B^+ \rightarrow D^+ D^- K^+$

Discriminate different interpretations via isospin symmetry

Similar decay widths based on compact tetraquark interpretation

Snuang Zneng

Amplitude analysis of $B^+ \to D^+ \overline{D}{}^0 K_S^0$ decays

Analysis Method

Signal extraction

- LHCb Run1+Run2 data
- Signal: 2 Gaussian function Background: exponential function
- Signal yield: 1540 ± 40
- Similar statistics compared with $B^+ \rightarrow D^+ D^- K^+$ decays

Amplitude construction

- Helicity formalism in model construction
- Potential resonances:
 - $\succ D^+ K_S^0 \text{ final state: } D_{S1}^* (2700)^+, D_{S1}^* (2860)^+, D_{S2}^* (2573)^+, D_{S3}^* (2860)^+$ Relativistic Breit-Wigner lineshape, parameters fixed to PDG
 - $\geq \overline{D}^0 K_{\rm S}^0$ final state: potential $T^*_{cs0}(2870)^0, T^*_{cs1}(2900)^0$
- S-wave and P-wave $\overline{D}{}^{0}K_{S}^{0}$ non-resonance
- coherently add different resonant or non-resonant contribution in amplitude

Analysis Results

Amplitude fit result

- Significant $T^*_{cs0}(2870)^0$ signal (5.3 σ) $M(T^{*0}_{cs0}) = 2883 \pm 11 \pm 7 \text{ MeV}/c^2,$ $\Gamma(T^{*0}_{cs0}) = 87^{+22}_{-47} \pm 6 \text{ MeV},$
- Acceptable description to data even without $T_{cs1}^*(2900)^0$
- Moments analysis agrees with the results above (See backup)
- Bad fit quality with only $T^*_{cs1}(2900)^0$ and no $T^*_{cs0}(2870)^0$

Comparison with previous results

An additional amplitude model: Add $T^*_{cs0}(2870)^0$ and $T^*_{cs1}(2900)^0$ into amplitude with parameters constrained to PDG values

Isospin analysis

Isospin symmetry requires:

Summary

• As exotics with single heavy quark, the natures of $T_{cs0}^*(2870)^0$ and $T_{cs1}^*(2900)^0$ are under heavy debate.

• Amplitude analysis of $B^+ \to D^+ \overline{D}{}^0 K_S^0$ decays performed with LHCb data, $T_{cs0}^* (2870)^0$ is confirmed, while $T_{cs1}^* (2900)^0$ is not significant.

• Isospin symmetry is not well preserved in T_{cs1}^* (2900)⁰ decays.

Thanks for listening!

Backup

Angular distributions

Figure S5: The (a) $\cos \theta_{D^-K_S^0}$, (b) $\cos \theta_{D^0K_S^0}$ and (c) $\cos \theta_{D^-D^0}$ distributions, overlaid by the fit projections (thick blue) with or (dashed magenta) without the $T_{cs0}^*(2870)^0$ state. The subcomponents correspond to the fit including the $T_{cs0}^*(2870)^0$ structure.

Moments analysis

Figure S2: Distributions of the first nine moments as a function of $m_{D^0K_{\rm S}^0}$, for data (black dot) and for the sample generated based on the nominal amplitude model (red dot).

Amplitude analysis of $B^+ \to D^+ \overline{D}{}^0 K_S^0$ decays