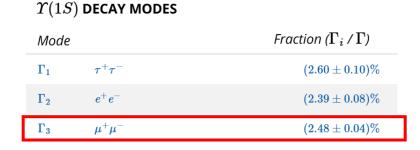
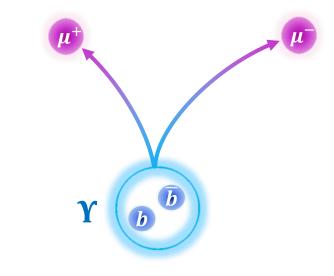
Measurements of the $\Upsilon(1S, 2S, 3S)$ Cross Sections at $\sqrt{s} = 13.6$ TeV with CMS 2022 Data

> Zhen Hu, Yuxiao Wang, **Yiyang Zhao** Tsinghua University

CLHCP - 14th Nov 2024

Introduction and Motivation


- Quarkonium production helps to study the interplay of perturbative and non-perturbative QCD.
- Quarkonium production mechanism is still unclear. Several contradictions exist in theoretical calculations:
 - The Color Singlet Model(CSM) underestimates cross sections.
 - Non-relativistic QCD (CSM + COM-Color Octet Mechanism) gives better prediction on cross sections but fails to describe the polarization effects.



Introduction and Motivation

- An early analysis of 13.6 TeV will help to check Run-3 performance and understand the mechanisms of quarkonium production better.
- Our goal is to measure the cross sections at 13.6 TeV in a larger kinematic region and compare them with theory and those at 13 TeV.
 - 10 GeV < p_T < 200 GeV, |y| < 1.2
 - Integrated luminosity of 37.4 fb^{-1} .
- We choose Υ decay to two μ channel:
 - This physics process is cleaner.
 - CMS has the best technology to identity μ .

Previous Results

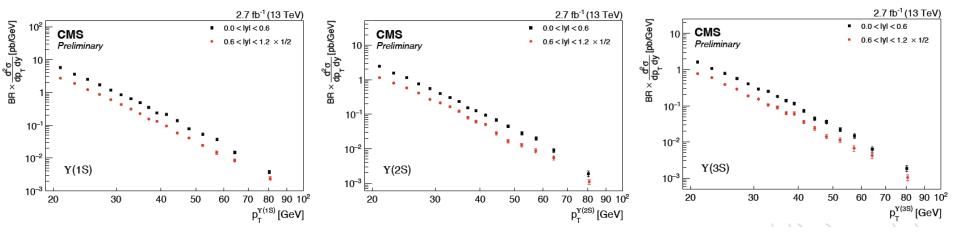
Collision Type	\sqrt{s} [TeV]	Integrated Luminosity $[fb^{-1}]$	Experiment	Kinematic Region for Differential Cross Section
	2.76	0.00023	CMS	
	5.02	0.028	CMS	$p_T 0 - 30 \text{ GeV}, y < 1.93$
	7	0.0031	CMS	$p_T 0 - 30 \text{ GeV}, y < 2$
	7	0.0358	CMS	$p_T 0 - 50 \text{ GeV}, y < 2.4$
	7	4.9	CMS	$p_T \ 0 - 100 \ { m GeV}, y < 1.2$
рр	7	1.8	ATLAS	$p_T 0 - 70 \text{ GeV}, y < 2$
	7	0.025	LHCb	$p_T \ 0 - 15 \ \text{GeV}, 2 < y < 4.5$
	7	0.000056	ALICE	
	13	2.7	CMS	$p_T \ 10 - 100 \ \text{GeV}, y < 1.2$
This Analysis	13.6	37.4	CMS	$p_T 10 - 200 { m GeV}$, $ y < 1.2$
PbPb	2.76	0.0000000728	CMS	
PUPU	2.76	0.0000015	CMS	
pPb	5.02	0.0000356	CMS	$p_T \ 0 - 30 \ \text{GeV}, y < 1.93$

• Differential cross sections of $\Upsilon(1S, 2S, 3S)$ as functions of transverse momentum (p_T) and rapidity (y).

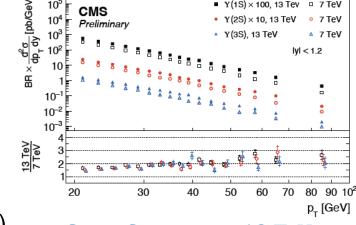
• Results have shown discrepancies with theoretical predictions, highlighting the need for further research.

• Our analysis also focus on p_T and y differential cross sections but has largest kinematic region and statistic. 4

2.7 fb⁻¹ (13 TeV

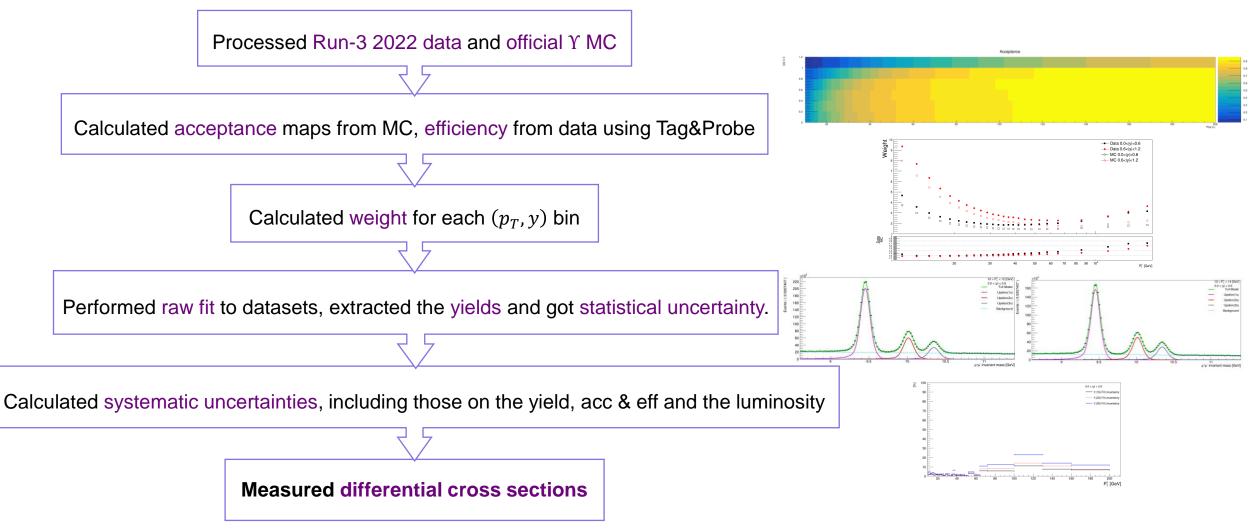

Previous Results: CMS 13 TeV BPH-15-005

• Differential cross sections:


$$BR(Y \to \mu^+ \mu^-) \times \frac{d^2 \sigma}{dp_T dy} = \frac{N^Y(p_T, y)}{L \Delta y \Delta p_T} \cdot \langle \frac{1}{\epsilon(p_T, y) \mathcal{A}(p_T, y)} \rangle$$

 $\left\langle \frac{1}{\epsilon(p_T,y)\mathcal{A}(p_T,y)} \right\rangle$: average weight over the corresponding (p_T,y) bin

- $N^{\Upsilon}(p_T, y)$: yields obtained from an Extended Maximum Likelihood
- *L*: integrated luminosity
- $\mathcal{A}(p_T, y)$: the geometrical acceptance obtained from MC (particle gun)
- $\epsilon(p_T, y)$: efficiency obtained from Tag&Probe and compared with MC (pythia)
- We use similar strategy to measure differential cross section at 13.6 TeV.


Comparison of Run-1 (7 TeV) and Run-2 (13 TeV) Cross Sections

for Y(1S, 2S, 3S) in Two Rapidity Ranges

Analysis Overview

Datasets

2022 PromptReco ParkingDoubleMuonLowMass

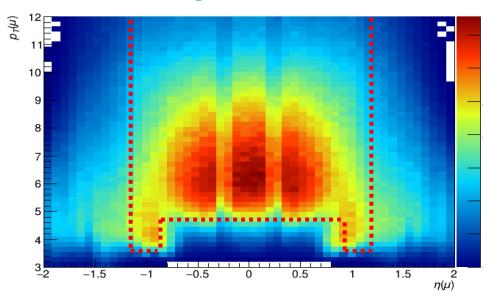
Dataset	Run Range	Integrated Luminosity	
/Run2022C-PromptReco-v1/MINIAOD	355862-357482	9.6 fb ⁻¹	
/Run2022D-PromptReco-v1/MINIAOD	357538-357733		
/Run2022D-PromptReco-v2/MINIAOD	357734-357900		
/Run2022E-PromptReco-v1/MINIAOD	359356-360327	27.8 fb ⁻¹	
/Run2022F-PromptReco-v1/MINIAOD	360390-362167		
/Run2022G-PromptReco-v1/MINIAOD	362433-362760		

- Data quality as in Cert_Collisions2022_355100_362760_Muon.json
- Trigger Dimuon10_Upsilon_y1p4_v*
- MC samples

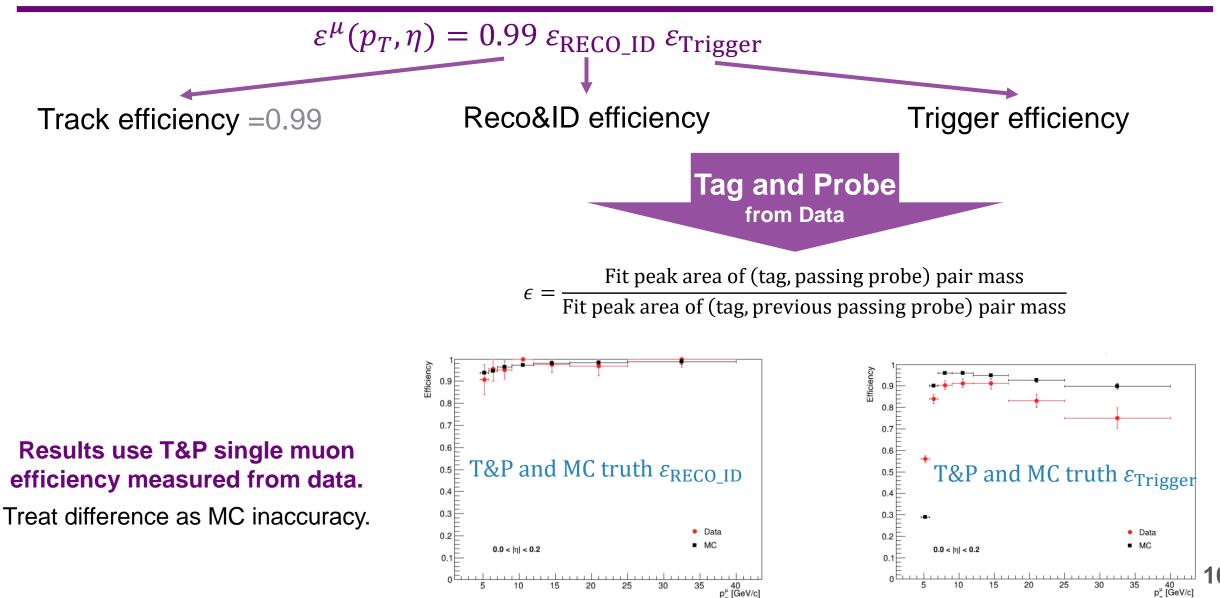
Upsilonto2Mu_UpsilonFilter_2MuFilter_TuneCP5_13p6TeV_pythia8 private gen-only Particle-gun MC with flat- p_T and no Gen filter Private full-chain Pythia8 MC without Gen filter

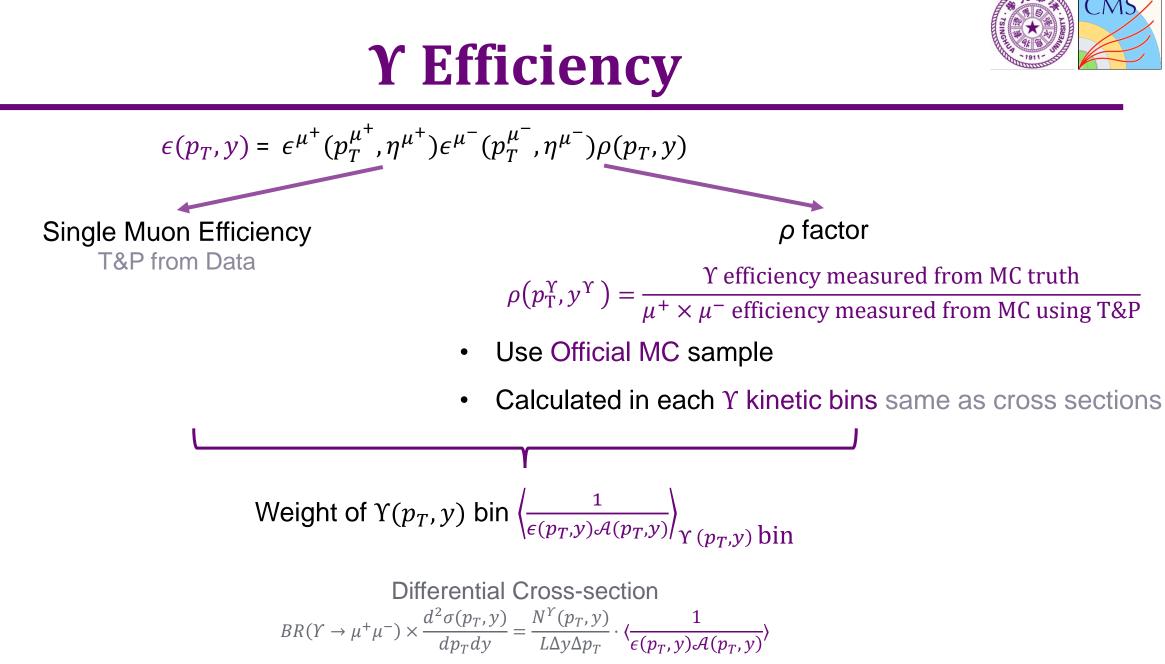
MC Efficiency Acceptance Closure test

Pre-selection and Y Reconstruction


- Traditional Onia2MuMu package with
 - Soft Muon ID
 - $M(\mu^{+}\mu^{-}) > 2 \text{ GeV}$
 - |dz1 dz2| < 25 cm
- Muon quality based on standard POG recommended Soft ID
 - Tracker trajectories are matched to at least one muon segment (within any station) in both X and Y coordinates (< 3σ) (TMOneStationTight) and arbitrated;
 - The transverse and longitudinal impact parameters: $d_{xy} < 0.3$ cm, $d_z < 20$ cm with respect to the primary vertex (PV), which implies (loose) compatibility with PV (or the beam spot);
 - Number of tracker layer with hits > 5, which ensures a good p_T measurement with a minimum number of measurement points needed in the tracker. It also suppresses muons from in-flight decays;
 - Number of pixel layers > 0, further suppressing muons from in-flight decays;
 - High-purity track flag to reject the tracks of bad quality;
- Datasets production are processed in CMSSW_12_4_11_patch1

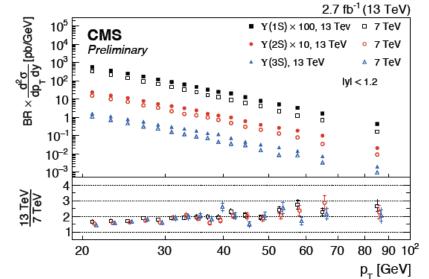
Acceptance


- Using GEN-only Particle-gun MC with flat p_T
 - $p_T \in (0,200) \text{ GeV}, \eta \in (-3,3), \phi \in (-\pi,\pi)$
- Definition $\mathcal{A} = \frac{N_{GEN, pass}(p_T, y)}{N_{GEN}(p_T, y)}$
 - $N_{GEN, pass}(p_T, y)$: Number of generated events that pass the acceptance criteria
 - $N_{GEN}(p_T, y)$: Total number of generated events
- Acceptance criteria Same strategy as 13TeV
 - $p_T(\mu^+\mu^-) > 10 \text{ GeV}$
 - $|y(\mu^+\mu^-)| < 1.2$
 - $p_T(\mu) > 4.6 \text{ GeV}$ if $0.0 < |\eta(\mu)| < 0.9$
 - $p_T(\mu) > 3.6 \text{ GeV}$ if $0.9 < |\eta(\mu)| < 1.2$


Acceptance Criteria

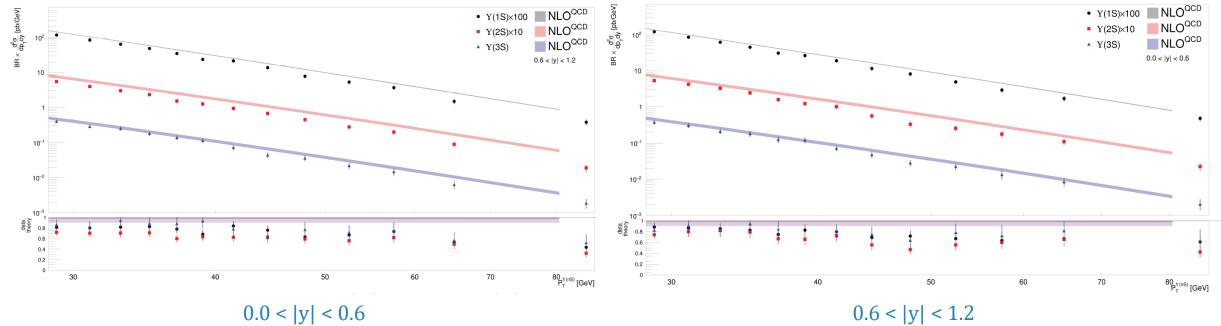
Single Muon Efficiency

Results


Double-differential Cross sections are calculated with the expression:

$$BR(\Upsilon \to \mu^{+}\mu^{-}) \times \frac{d^{2}\sigma(p_{T}, y)}{dp_{T}dy} = \frac{N^{\Upsilon}(p_{T}, y)}{L\Delta y \Delta p_{T}} \cdot \langle \frac{1}{\epsilon(p_{T}, y)\mathcal{A}(p_{T}, y)} \rangle$$
$$\left\langle \frac{1}{\epsilon(p_{T}, y)\mathcal{A}(p_{T}, y)} \right\rangle: \text{ weight of corresponding } \Upsilon(p_{T}, y) \text{ bin}$$

- \mathcal{A} from MC truth.
- ϵ from data using Tag&Probe method. (MC used for correlation factor calculation)


BPH-15-005Measured double-differential cross sections times
branching ratios for $\Upsilon(1S, 2S, 3S)$ at $\sqrt{s} = 13$ TeV

We measured similar results at $\sqrt{s} = 13.6$ TeV Awaiting approval

Comparison with Theory

- Measured differential cross sections at 13 TeV (BPH-15-005)
- Next-to-Leading Order QCD predictions are acquired through private communication with authors of Yu Feng et al 2021 Chinese Phys. C 45 013117
- Uncertainty of theoretical calculations are estimated from LDMEs
- Branching ratios are according to the PDG

Measured results are slightly smaller relative to theoretical prediction. We compared our results at $\sqrt{s} = 13.6$ TeV with theory.

Summary and Outlook

- Measured Y (1S, 2S, 3S) differential cross sections at 13.6 TeV. 10 GeV $< p_T < 200$ GeV, |y| < 1.2
- Compared with previous 13 TeV results and theory.
- Wrote Analysis Note, paper draft and twiki page.
- Opened CMS CADI line **BPH-24-004**.
- Awaiting approval from CMS Collaboration.

Thanks for your attention!

Yiyang Zhao Tsinghua University

CLHCP - 14th Nov 2024

BACKUP

Pervious Talks

P&P meeting

- 17th May 2023 https://indico.cern.ch/event/1281637/
- 13th December 2023 https://indico.cern.ch/event/1338471/
- 3rd April 2024 https://indico.cern.ch/event/1400102/
- 10th July 2024 https://indico.cern.ch/event/1425425/

Muon POG meeting

29th July 2024 https://indico.cern.ch/event/1441994/

Open a CADI line BPH-24-004.

Run-3 2022 Datasets

• Data are stored in ParkingDoubleMuonLowMass primary data set.

Data Samples	Run Range	Luminosity	
/Run2022C-PromptReco-v1/MINIAOD	355862-357482		
/Run2022D-PromptReco-v1/MINIAOD	357538-357733	$9.624 f b^{-1}$	
/Run2022D-PromptReco-v2/MINIAOD	357734-357900	(CD – preEE period)	
/Run2022E-PromptReco-v1/MINIAOD	359356-360327		
/Run2022F-PromptReco-v1/MINIAOD	360390-362167	27.787 <i>f b⁻¹</i> (EFG – postEE period)	
/Run2022G-PromptReco-v1/MINIAOD	362433-362760		

- Data quality as in: Cert_Collisions2022_355100_362760_Muon.json
- Trigger: Dimuon10_Upsilon_y1p4_v*
- MC samples:

Upsilonto2Mu_UpsilonFilter_2MuFilter_TuneCP5_13p6TeV_pythia8 private gen-only particle-gun MC with flat-pT and no Gen filter Private full-chain pythia MC without Gen filter official MC for acceptance for closure test

MC samples

- Official 2022 MC:
 - For Run C D:

/Upsilonto2Mu_UpsilonFilter_2MuFilter_TuneCP5_13p6TeV_pythia8/Run3Summer22MiniA ODv3-124X_mcRun3_2022_realistic_v12-v2/MINIAODSIM

• For Run E F G:

/Upsilonto2Mu_UpsilonFilter_2MuFilter_TuneCP5_13p6TeV_pythia8/Run3Summer22EEMini AODv3-124X_mcRun3_2022_realistic_postEE_v1-v2/MINIAODSIM

```
process.oniafilter = cms.EDFilter("PythiaFilter",
MaxRapidity = cms.untracked.double(1.3),
MinPt = cms.untracked.double(9.0),
MinRapidity = cms.untracked.double(-1.3),
ParticleID = cms.untracked.int32(553),
Status = cms.untracked.int32(2)
)
```

```
process.mumufilter = cms.EDFilter("PythiaDauVFilter",
ChargeConjugation = cms.untracked.bool(False),
DaughterIDs = cms.untracked.vint32(13, -13),
MaxEta = cms.untracked.vdouble(2.4, 2.4),
MinEta = cms.untracked.vdouble(-2.4, -2.4),
MinPt = cms.untracked.vdouble(3.0, 3.0),
MotherID = cms.untracked.int32(0),
NumberDaughters = cms.untracked.int32(2),
ParticleID = cms.untracked.int32(553))
```

- Private gen-only particle-gun MC without Gen filter for acceptance
- Private full-chain pythia MC without Gen filter for closure test

Muon Pre-selection and Onia Reconstruction

• Use traditional Onia2MuMu package with:

```
Soft Muon ID && M(\mu^+\mu^-) > 2 GeV && |dz1 - dz2| < 25 cm
```

Muon quality based on standard POG recommended "Soft ID"

```
process.selectedMuons.cut = cms.string('muonID(\"TMOneStationTight\")'
```

- ' && abs(innerTrack.dxy) < 0.3'
- ' && abs(innerTrack.dz) < 20.'
- '&& innerTrack.hitPattern.trackerLayersWithMeasurement > 5'
- '&& innerTrack.hitPattern.pixelLayersWithMeasurement > 0'

```
'&& innerTrack.quality(\"highPurity\")'
```

```
' && (abs(eta) <= 2.4 && pt > 3.)'
```

- ROOT trees are produced with CMSSW_12_4_11_patch1
- Finished jobs(full 2022) are stored in

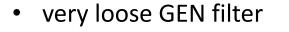
root://cms-xrd-global.cern.ch//store/user/yuxiao/Upsilon

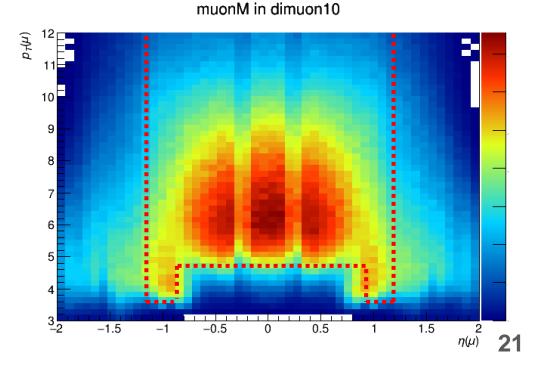
root://cms-xrd-global.cern.ch//store/user/yiyangz/Research/CMS_Run3_Upsilon

Acceptance Criteria

 $\mathcal{A} = \frac{N_{GEN, pass}(p_T, y)}{N_{CEN}(p_T, y)}$

The acceptance in the (p_T, y) bin is defined as

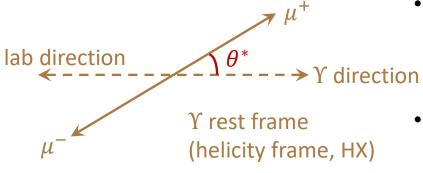

- $N_{GEN, pass}(p_T, y)$: number of generated events that pass the acceptance criteria
- $N_{GEN}(p_T, y)$: total number of simulated events


Calculated using GEN-only Particle Gun MC with flat p_T

- $p_T \in (0,200)$ GeV, $\eta \in (-3,3)$, $\phi \in (-\pi,\pi)$ Our acceptance criteria:
- $p_T(\mu^+\mu^-) > 10 \text{ GeV}$
- $0.0 < |y(\mu^+\mu^-)| < 1.2$
- $p_T(\mu) > 4.6 \text{ GeV}$ if $0.0 < |\eta(\mu)| < 0.9$
- $p_T(\mu) > 3.6 \text{ GeV}$ if $0.9 < |\eta(\mu)| < 1.2$

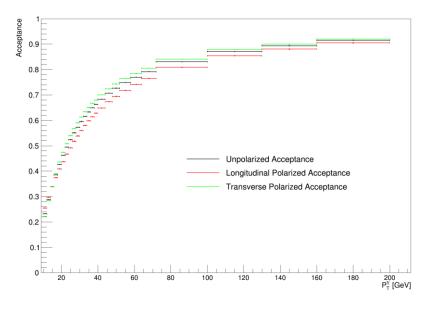
Slightly different than the 13 TeV analysis:

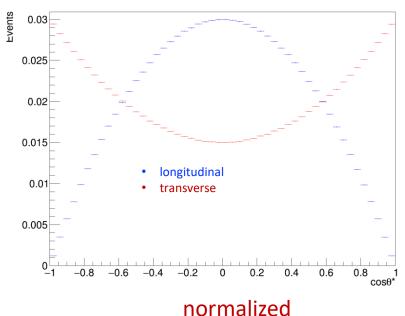
- $p_T(\mu^+\mu^-) > 20 \text{ GeV}$
- $0 < |y(\mu^+\mu^-)| < 1.2$
- $p_T(\mu) > 4.5 \text{ GeV}$ if $0.0 < |\eta(\mu)| < 0.3$
- $p_T(\mu) > 4.0 \text{ GeV}$ if $0.3 < |\eta(\mu)| < 1.4$



Polarization Effects on Acceptance

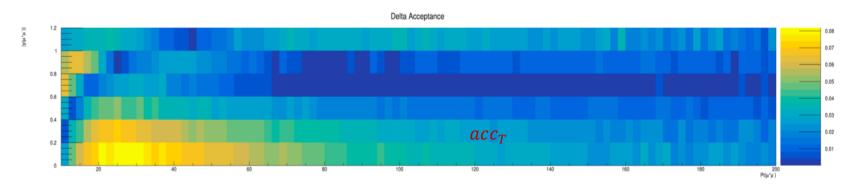
• $I(\cos\theta^*) = \frac{d\sigma}{d\cos\theta^*} \propto (1 + \lambda \cos^2 \theta^*)$ $\sigma_{(L/T)}$: (longitudinal / transverse component of) the cross section λ : the polarization parameter. $\lambda = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}$ θ^* : the polar angle

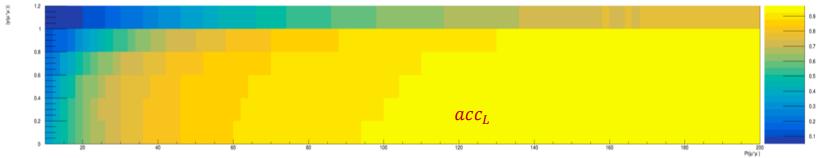

transverse polarization:

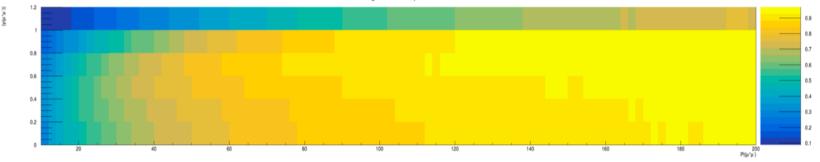

•
$$I_T(\cos\theta^*) = \frac{3}{8}(1 + \cos^2\theta^*), \ \lambda = 1$$

longitudinal polarization:

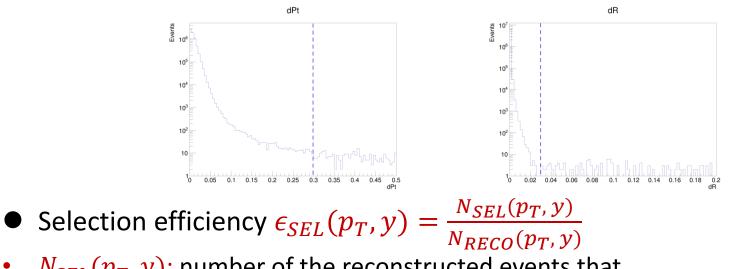
•
$$I_T(\cos\theta^*) = \frac{3}{4}(1 - \cos^2\theta^*), \ \lambda = -1$$






Polarization Effects on Acceptance

Longitudinal Acceptance


Provided as acceptance correction factor for each bins table in the AN.

Efficiencies

 $\epsilon(p_T, y) = \epsilon_{RECO}(p_T, y)\epsilon_{SEL}(p_T, y)$

Efficiencies are calculated using the official Monte Carlo sample

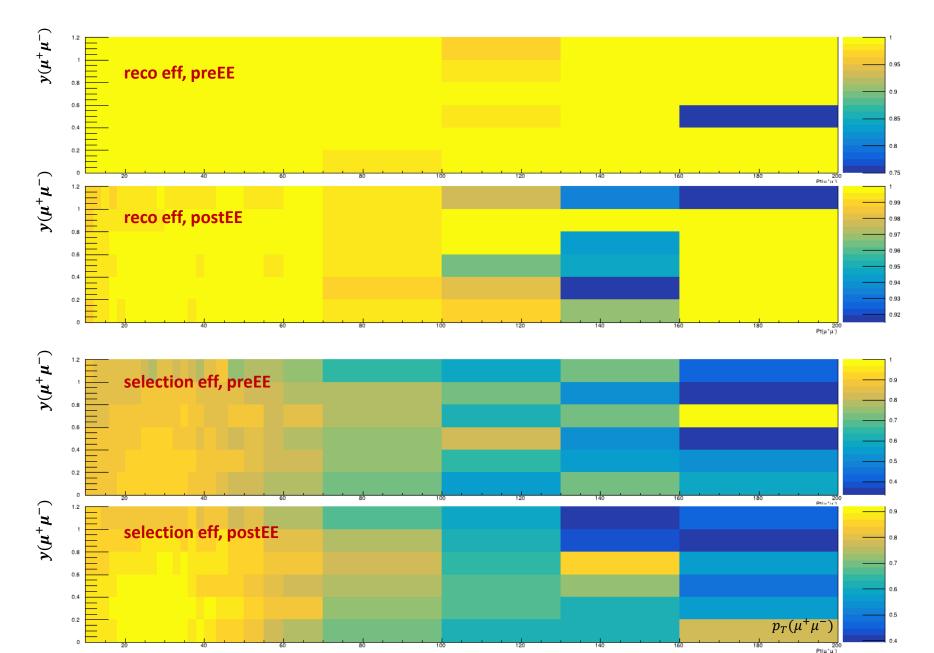
- Reconstruction efficiency $\epsilon_{RECO}(p_T, y) = \frac{N_{RECO}(p_T, y)}{N_{GEN, pass}(p_T, y)}$
- $N_{RECO}(p_T, y)$: number of events that:
 - pass the acceptance criteria
 - pass the pre-selection
 - matched to GEN: $(\Delta p_T(\Upsilon_{RECO}, \Upsilon_{GEN}), \Delta R(\Upsilon_{RECO}, \Upsilon_{GEN})) < (0.3, 0.03)$
- $N_{GEN, pass}(p_T, y)$: number of generated events that pass the acceptance criteria

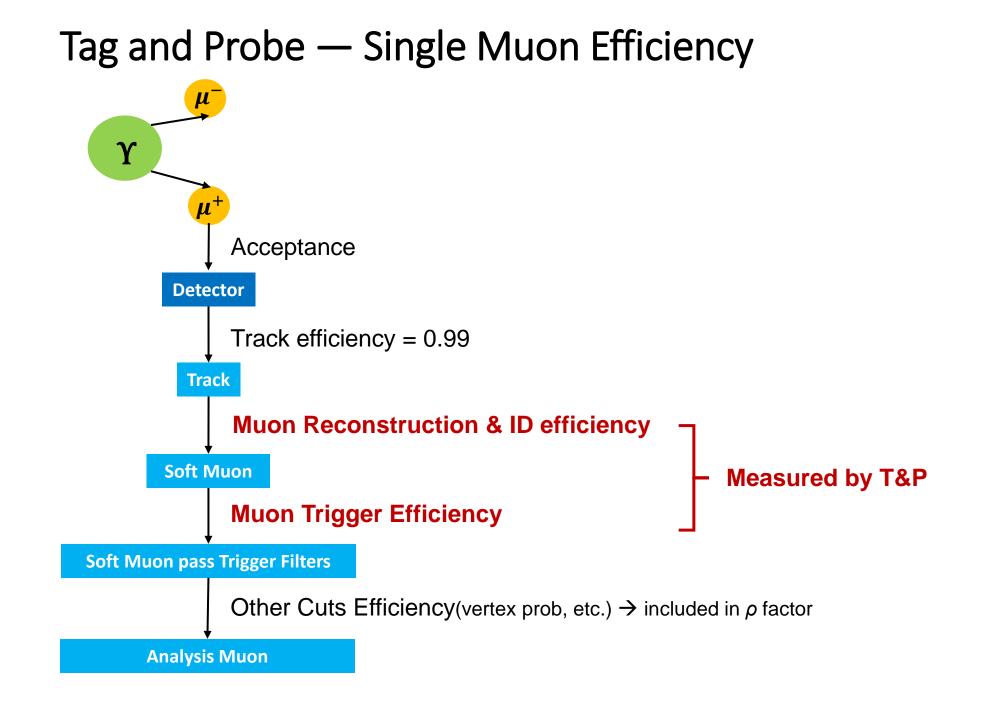
- $N_{SEL}(p_T, y)$: number of the reconstructed events that
 - vertex probability > 0.1
 - pass the high-level trigger HLT_dimuon10_y1p4_v

Efficiencies

• The acc & eff work together as a correction factor on the signal yields:

$$BR(\Upsilon \to \mu^{+}\mu^{-}) \times \frac{d^{2}\sigma(p_{T}, y)}{dp_{T}dy} = \frac{N_{corrected}^{\gamma}(p_{T}, y)}{L\Delta y \Delta p_{T}}$$
$$= \frac{N^{\gamma}(p_{T}, y) \cdot \frac{1}{\epsilon(p_{T}, y)\mathcal{A}(p_{T}, y)}}{L\Delta y \Delta p_{T}}$$
$$= \frac{N^{\gamma}(p_{T}, y) \cdot \frac{1}{\epsilon_{reco}(p_{T}, y)\epsilon_{cuts}(p_{T}, y)\mathcal{A}(p_{T}, y)}}{L\Delta y \Delta p_{T}}$$


- Data are split into 50 bins in total:
 - y bins: 0 < |y| < 0.6 and 0.6 < |y| < 1.2
 - p_T bins: 15 bins of 2 GeV in 10-40 GeV

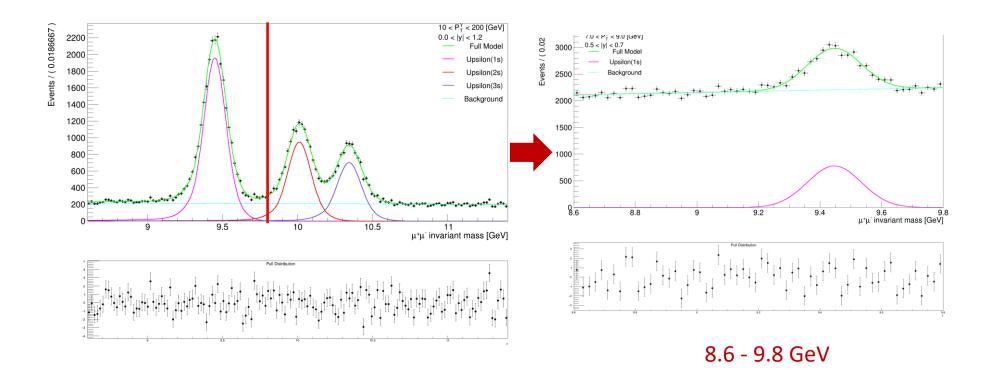

10 bins of 40-43, 43-46, 46-50, 50-55, 55-60,

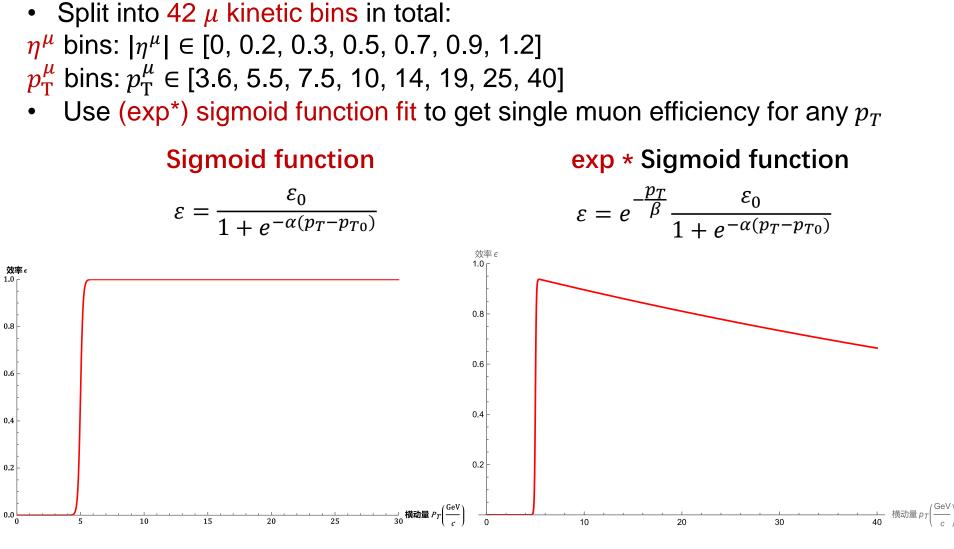
60-70, 70-100, 100-130, 130-160, 160-200 GeV

Same as 13 TeV in the shared range — easy to compare

Efficiencies

- Track efficiency = 0.99
- Reconstruction & ID efficiency
- Trigger Efficiency For each step: $\epsilon = \frac{\text{fit peak area of passing probe}}{\text{fit peak area of previous passing probe}}$


 $\varepsilon_{\mu} (p_T, \eta) = 0.99 \varepsilon_{RECO_{ID}} \varepsilon_{Trigger}$


Use Run-3 2022 Muon datasets

Data Samples	Run Range	Integral Luminosity	
/Muon/Run2022C-22Sep2023-v1/MINIAOD	357538-357733	$8.08 fb^{-1}$	
/Muon/Run2022D-22Sep2023-v1/MINIAOD	357734-357900	(CD – preEE period)	
/Muon/Run2022E-22Sep2023-v1/MINIAOD	359356-360327		
/Muon/Run2022F-PromptReco-v1/MINIAOD	360390-362167	$27.09 f b^{-1}$	
/Muon/Run2022G-PromptReco-v1/MINIAOD	362433-362760	(EFG – postEE period)	

Only use $\Upsilon(1S)$ to calculate

- One peak of mass is easy to fit
- Accurate for our analysis

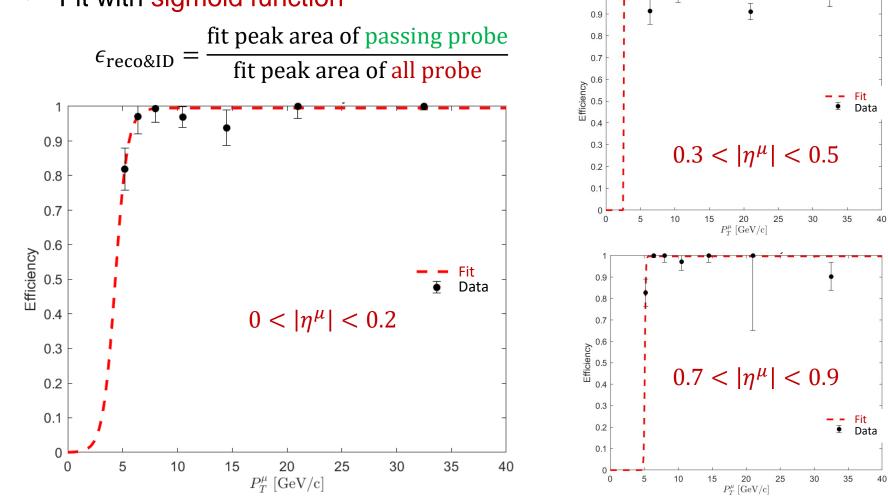
If efficiency decreases in high p_T region.

Tag and Probe — Single Muon Efficiency Pre-selection

• Use MuonAnalyzer package for Tag&Probe ntuple:

Mass window: 8.6 GeV < m(Tag,Probe) < 11.4 GeV Pair dz < 10.1 cm Tag.vz-Probe.vz < 1 cm Matched to track: [pt(mu)-pt(track)]/pt(track) < 1.0 Kills pair without vertex

• Tag selection

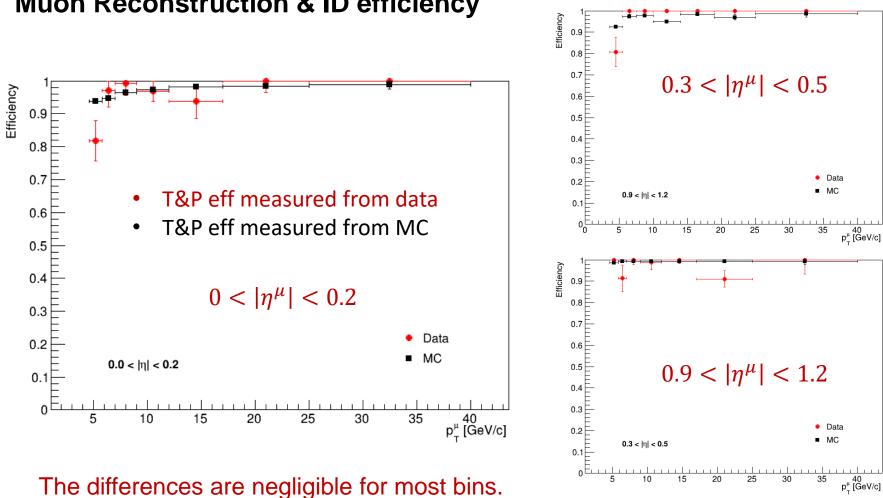

Global Muon NumberOfMatched-Stations > 0 $p_T > 8 \text{ GeV}$ Matched to muon in HLT_Mu8/15/17/19/20/27/50_v or HLT_IsoMu20/24_v

• Probe selection

p_T > 3 GeV Dr / offline < 0.06 highPurity track

Muon Reconstruction & ID efficiency

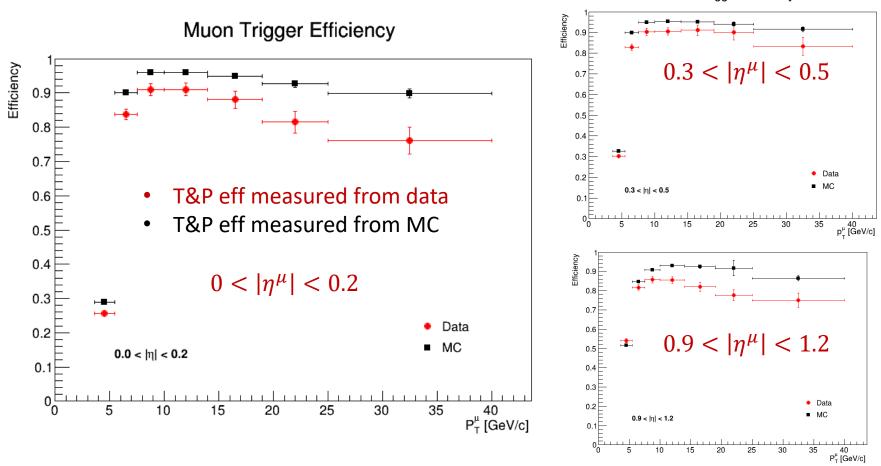
- All probe: track passing pre-selection
- Passing probe: Soft ID probe
- Fit with sigmoid function


Muon Trigger efficiency

• Passing probe: Soft ID probe passing L1L2L3 filters of HLT_Dimuon10_Upsilon_y1p4_v L1L2: hltL2fL1sL1s12DoubleMu4p5er2p0SQOSMass7to18L1f0L2v2PreFiltered0 L3: hltL1fForlterL3L1fL1sL1s12DoubleMu4p5er2p0SQOSMass7to18L1v2Filtered0

Fit with exp * sigmoid function Muon Trigger Efficiency 0.9 fit peak area of passing probe 0.8 $\epsilon_{
m trigger}$ = fit peak area of Soft ID muon probe 0.7 0.6 Efficiency 0.4 $0.3 < |\eta^{\mu}| < 0.5$ Muon Trigger Efficiency Fit Data Ŧ 0.3 0.9 0.2 0.8 0.1 0.7 Muon Trigger Efficiency Efficiency 0.9 0.8 $0 < |\eta^{\mu}| < 0.2$ 0.7 0.4 $0.7 < |\eta^{\mu}| < 0.9$ 0.0 5.0 0.3 Fit 0.2 Data 0.3 0.1 0.2 0.1 10 15 20 25 30 35 40 0 5 0 5 10 15 20 25 30 35 40 $P_T^{\mu} \, [\text{GeV/c}]$ $P_T^{\mu} \, [{\rm GeV/c}]$

Comparison with MC Single Muon Efficiency

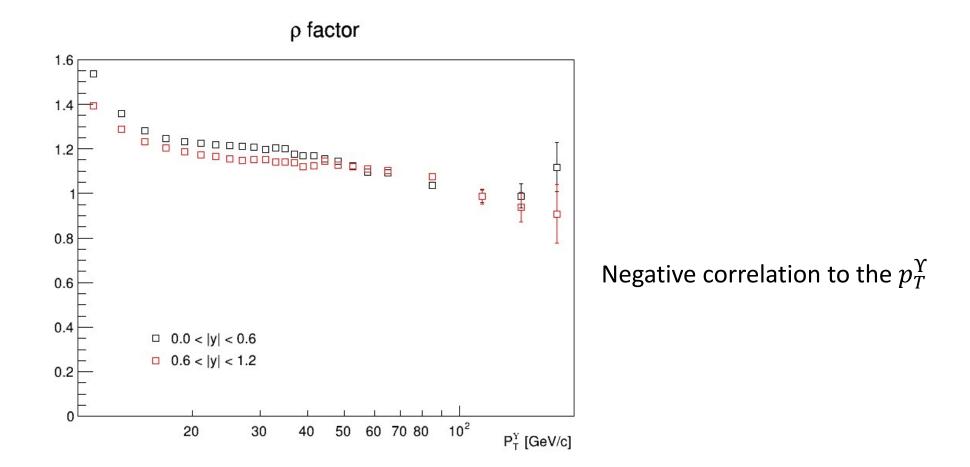

- Measured from official Monte Carlo sample using T&P ۲
- Same selection and code with data single Muon Efficiency calculation

Muon Reconstruction & ID efficiency

Data and MC Single Muon Efficiency Comparison

Muon Trigger efficiency

Muon Trigger Efficiency


Muon trigger efficiencies measured from MC are larger than those from data.

Cross section results now use MC truth efficiency. Final results will use T&P single muon efficiency measured from data.

ρ factor

 $\Upsilon \to \mu^+ \mu^ \rho(p_T^{\Upsilon}, y^{\Upsilon}) = \frac{\Upsilon \text{ efficiency measured from MC truth}}{\mu^+ \times \mu^- \text{ efficiency measured from MC using T&P}}$

- Use official Monte Carlo sample
- Split into 50 Y kinetic bins (same as cross section results)

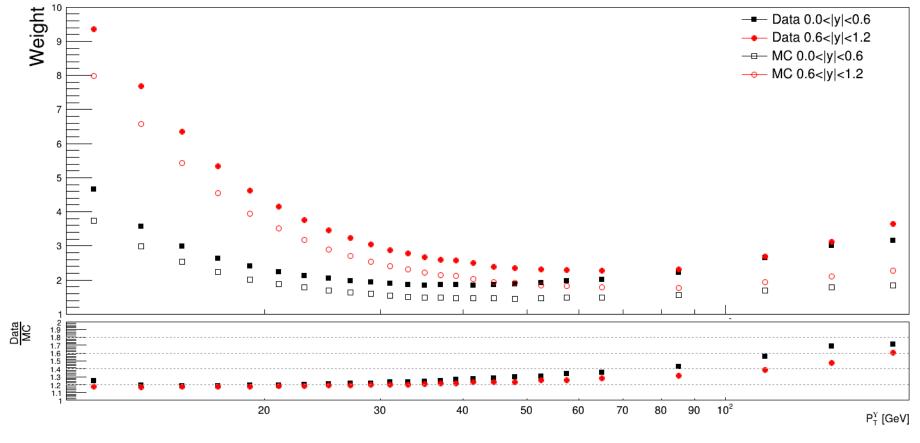
Weight

$$\Upsilon(p_T, y) \to \mu^+ \mu^- \qquad \epsilon(p_T, y) = \epsilon^{\mu^+}(p_T^{\mu^+}, \eta^{\mu^+}) \epsilon^{\mu^-}(p_T^{\mu^-}, \eta^{\mu^-}) \rho(p_T, y)$$

• Weighted Fit Weight of the $\Upsilon(p_T, y)$ event

$$\frac{1}{\epsilon(p_T, y)\mathcal{A}(p_T, y)}$$

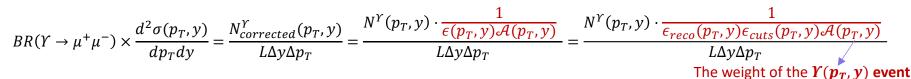
• Fit-then-weight Weight of the $\Upsilon(p_T, y)$ bin

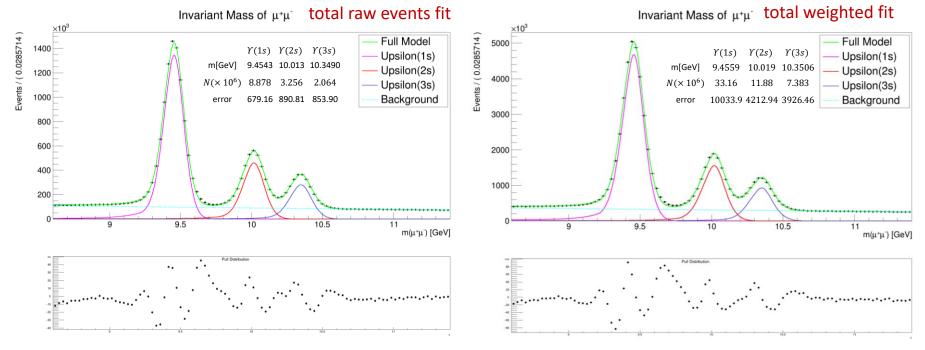

$$\left\langle \frac{1}{\epsilon(p_T, y)\mathcal{A}(p_T, y)} \right\rangle_{(p_T, y)}$$
 bin

Results now use weighted fit method with efficiency from MC truth. Final results will use fit-then-weight method with T&P data efficiency.

Comparison Between MC and Data Bin Weight

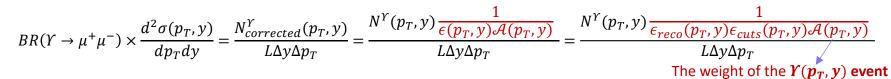
• Fit-then-weight Weight of the $\Upsilon(p_T, y)$ bin


$$\left\langle \frac{1}{\epsilon(p_T, y)\mathcal{A}(p_T, y)} \right\rangle_{(p_T, y)}$$
 bin

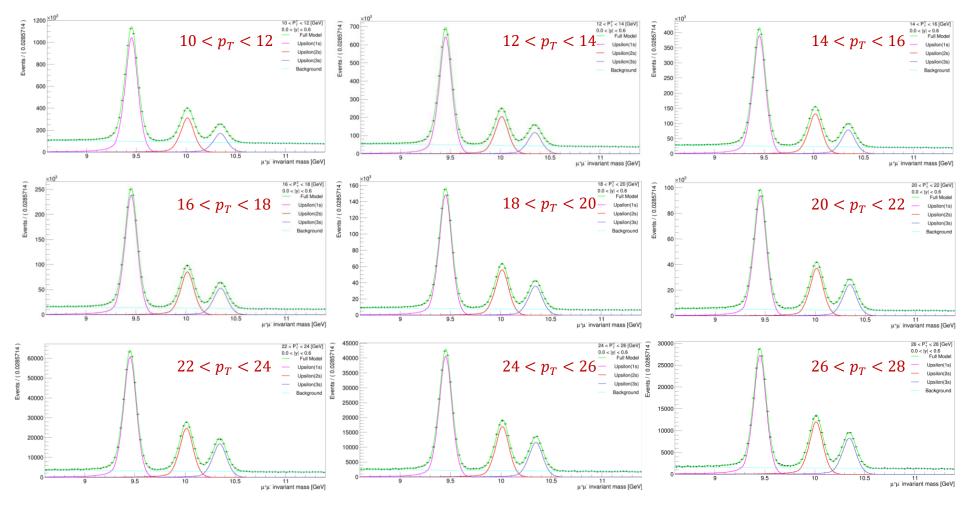

Signal Muon Efficiency Difference \rightarrow

Bin weights measured from MC are smaller than those from data

Yield Extraction

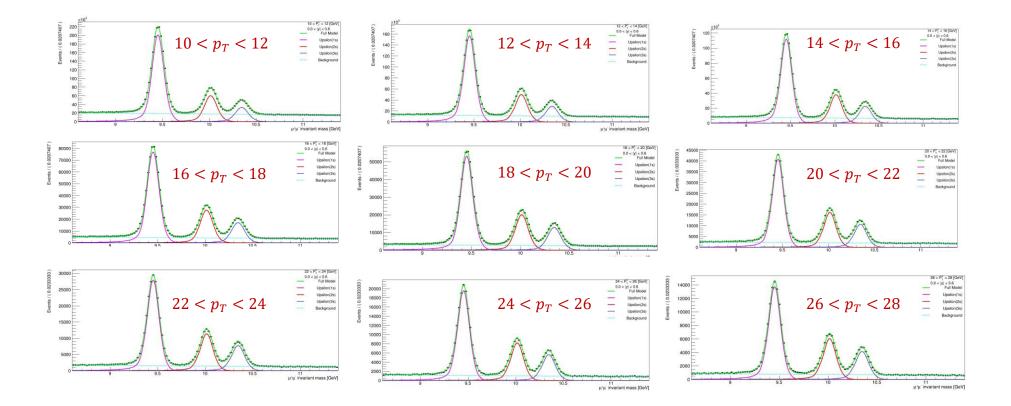


- Signal PDF: Double Crystalball for each $\Upsilon(nS)$ peak. n = 1,2,3
 - Each di-CB shares the same $\alpha_{1,2}$ and $n_{1,2}$
 - $n_{1,2}$ fixed from a large data sample $p_T \in (20,40), |y| \in (0,0.6)$ $\alpha_{1,2}$ float
 - Mass gaps $\Delta m(\Upsilon(1S), \Upsilon(2,3S))$ are fixed according to PDG, and $m_{\Upsilon(1S)}$ floats
 - Widths of $\Upsilon(ns)$ are set to satisfy: $\frac{\sigma_{\Upsilon(ns)}}{m_{\Upsilon(ns)}} = constant (n = 1,2,3)$
- Background PDF: 1st order polynomial



Weighted fit is performed on each (p_T, y) bin for the differential cross section measurements

Yield Extraction


• Weighted fits results of 9 bins with 0 < |y| < 0.6 (out of 50)

Yield Extraction

$$BR(\Upsilon \to \mu^{+}\mu^{-}) \times \frac{d^{2}\sigma(p_{T}, y)}{dp_{T}dy} = \frac{N_{corrected}^{\gamma}(p_{T}, y)}{L\Delta y \Delta p_{T}} = \frac{N^{\gamma}(p_{T}, y)\left(\frac{1}{\epsilon(p_{T}, y)\mathcal{A}(p_{T}, y)}\right)}{L\Delta y \Delta p_{T}} = \frac{N^{\gamma}(p_{T}, y)\left(\frac{1}{\epsilon_{reco}(p_{T}, y)\epsilon_{cuts}(p_{T}, y)\mathcal{A}(p_{T}, y)}\right)}{L\Delta y \Delta p_{T}}$$

The weight of the $\Upsilon(p_{T}, y)$ bin

- Raw fits are also performed \rightarrow Final results will use fit-then-weight method
- Raw fits results of 9 bins with 0 < |y| < 0.6 (out of 50)

Systematic Uncertainties

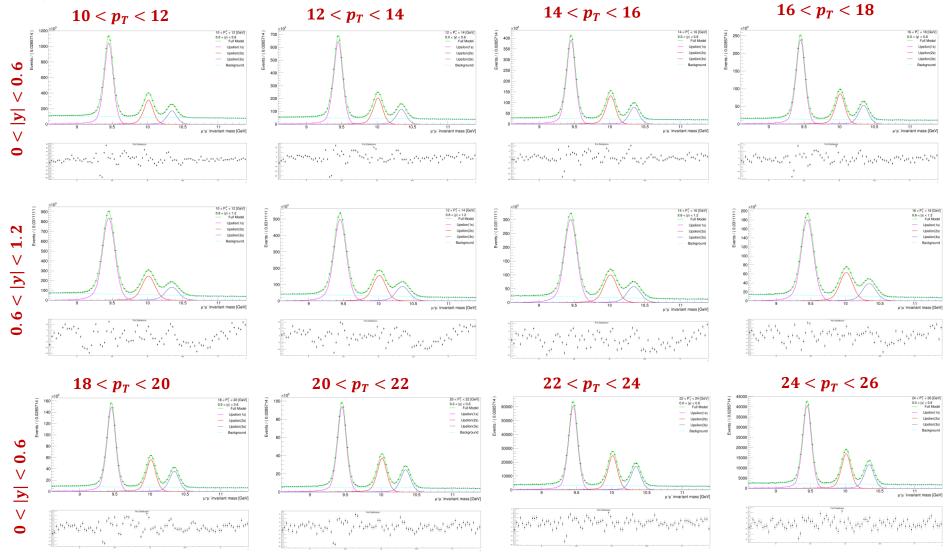
•Uncertainties on Yield: vary pdf parameters one at a time •For the $\Upsilon(1S, 2S, 3S)$ signal, vary $n_{1,2}$ by $\pm 5\sigma_{n_1,n_2}$, fix $\alpha_{1,2}$ from data •Free $m_{\Upsilon(1S)}$, $m_{\Upsilon(2S)}$ and $m_{\Upsilon(3S)}$ without any constraints among them •Replace the background PDF with an exponential shape •Uncertainties on Acceptance and Efficiency •The cross section $\sigma(p_T, y)$ is proportional to $\frac{1}{\epsilon(p_T, y)\mathcal{A}(p_T, y)}$ •Put the statistical uncertainties into the error propagation equation •Uncertainties on eff will be replaced by uncertainties of T&P once T&P study finished •Uncertainty on Luminosity = 1.4%

Total Systematic Uncertainty = RMS of all uncertainties mentioned above

Uncertainties on the Integrated Rapidity Ranges: merge y bins altogether
Syst. uncertainties on yields = Uncertainties on yield in Integrated Rapidity Ranges
Other Syst. uncertainties = weighted average of those from individual y bins

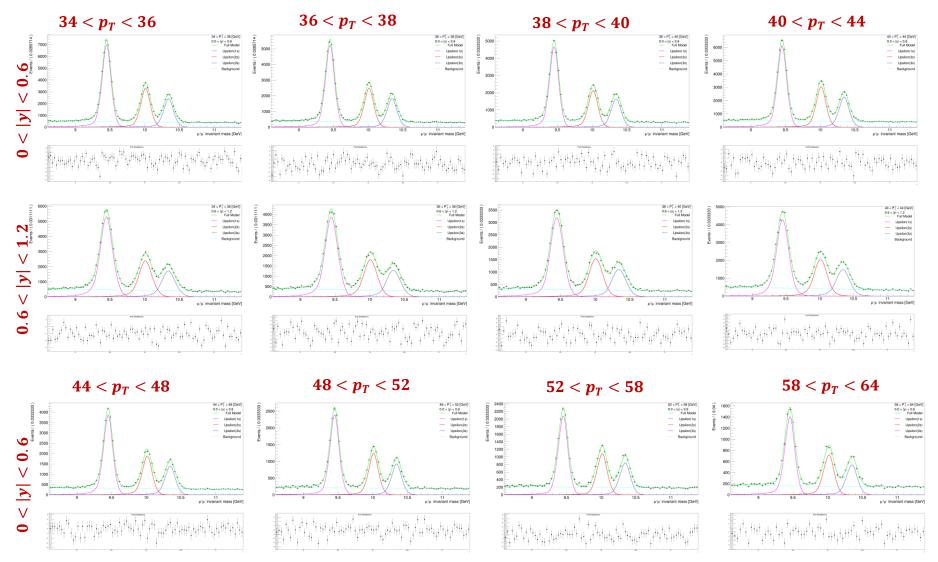
Closure Test for Acceptances and Efficiencies

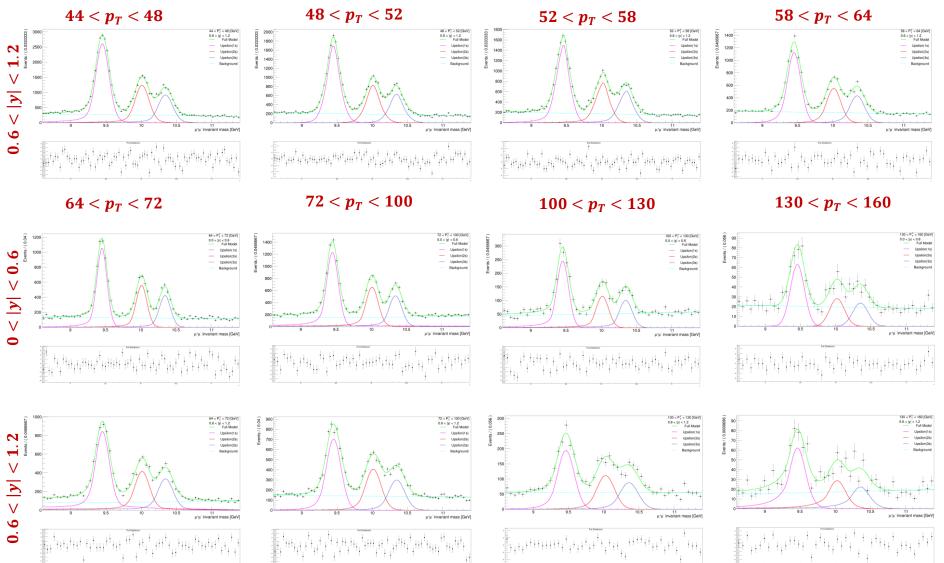
- Performed with a private full-chain Monte Carlo sample generated by Pythia 8
- Without selective GEN filter

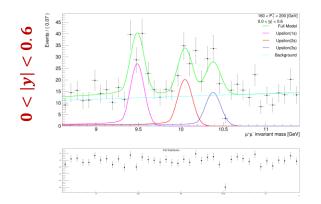

Data	Map-calculated yield	After-selection yield	Differences
Original data	80935	80935	None
Data after acceptance	51066	51130	0.12%
Data after RECO matching	50746	51071	0.64%
Data after selection	44183	44836	1.46%

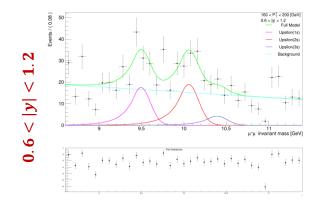
- Statistical uncertainty of acc and eff maps \rightarrow already included
- Systematic uncertainty due to binning \rightarrow test to be negligible

Test by using same MC sample for closure

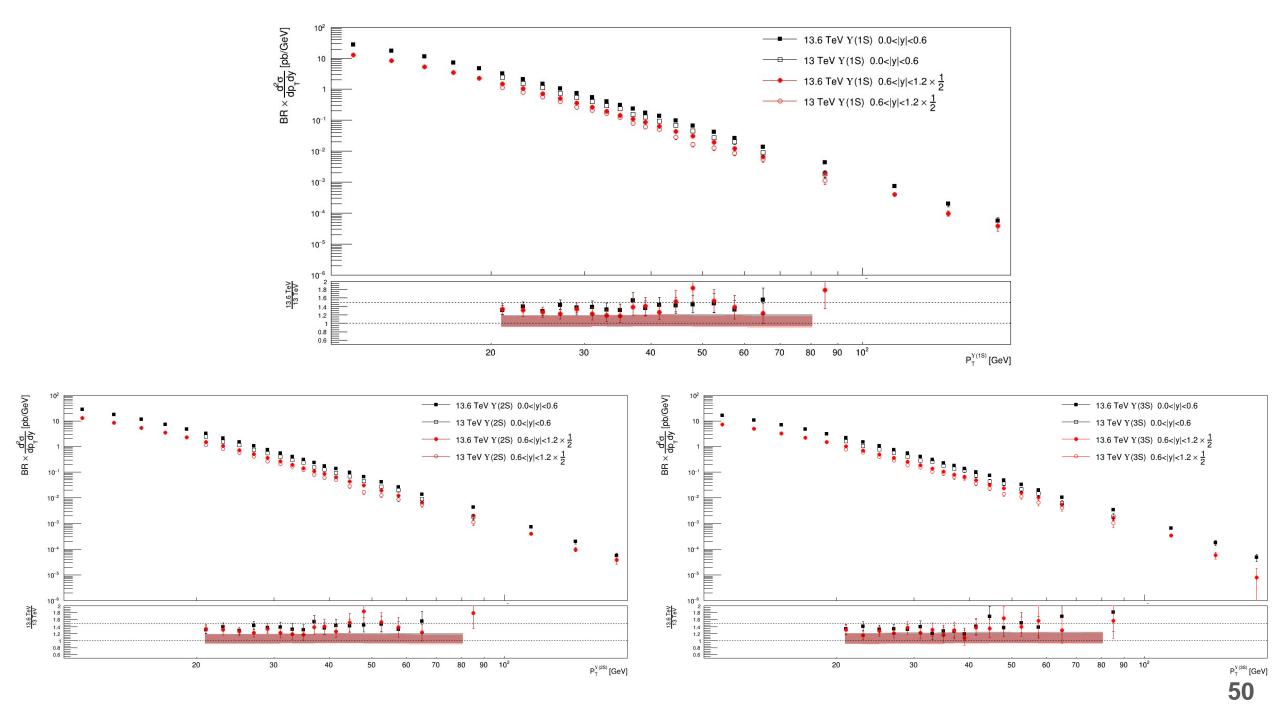

test and acceptance&efficiency calculation




~20 times more data comparing with 13 TeV Run 2 analysis



 $160 < p_T < 200$


Total cross section

- We made a rough estimation of the total cross section of Y(1S) based on Pythia
- Total yield N_{Y(1S)}:
 C D: 4.1026 × 10⁵

 - E F G: 1.1845×10^{6}
- Luminosity L:
 - C D: 9.624*f* b⁻¹
 - E F G: 27.787*f b*⁻¹
- GEN filter efficiency ϵ_{filter} : 3.190% \pm 0.176%
- RECO & cuts efficiency $\epsilon_{reco\&cuts} = \frac{N_{MCfit}}{N_{MCtotal}}$ C D: ${}^{6.3806 \times 10^5}/{}_{2.1846 \times 10^7} = 2.9207\%$ E F G: ${}^{2.2180 \times 10^6}/{}_{7.5812 \times 10^7} = 2.9256\%$
- Estimated total cross section:

 $\sigma_{tot}(pp \to Y(nS)X) \times BR(Y(nS) \to \mu\mu) = \frac{N}{\epsilon_{filter} \cdot \epsilon_{reco\&cuts} \cdot L}$

= 45.754nb

Total Cross Sections Comparison with 7TeV

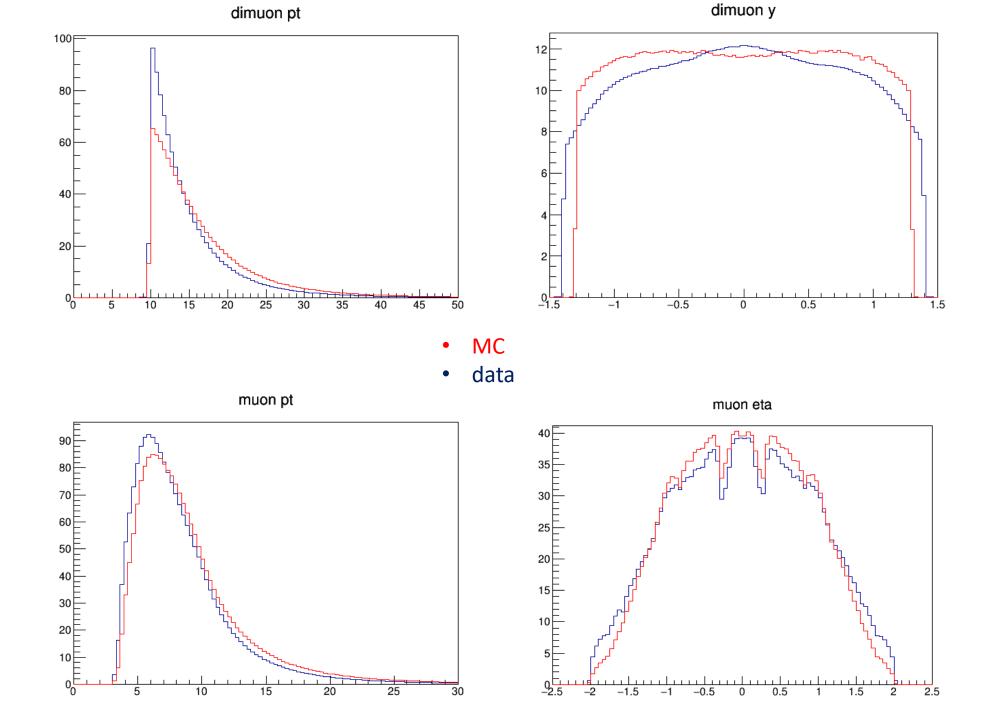
CMS-BPH-11-001 ; CERN-PH-EP-2012-373

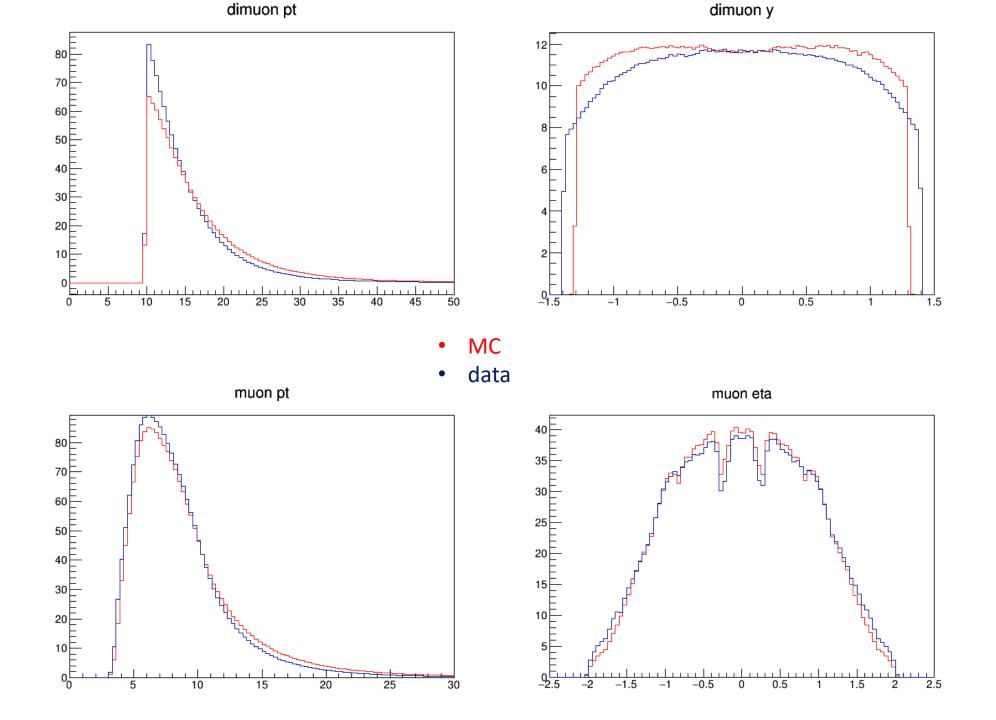
Measurement of the Y(1S) , Y(2S) , and Y(3S) cross sections in pp collisions at \sqrt{s} = 7 TeV

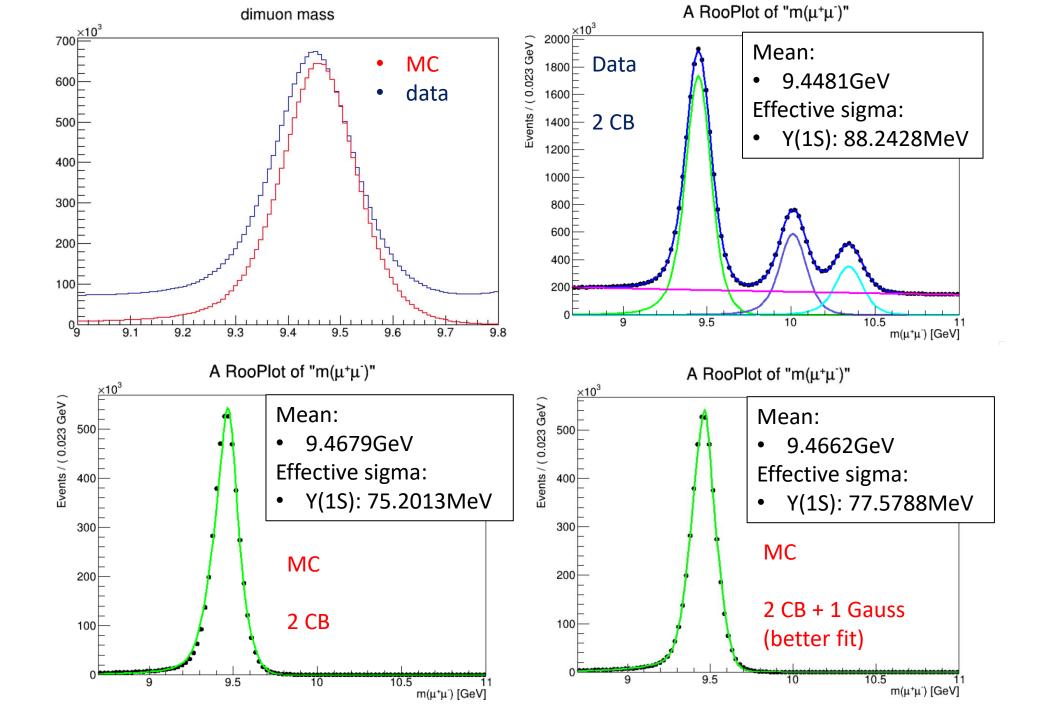
CMS Collaboration

24 March 2013

Phys. Lett. B 727 (2013) 101


Abstract: The $Y(1S),\,Y(2S),\,$ and Y(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 ± 1.4 inverse picobarns of proton-proton collisions at \sqrt{s} = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the Y transverse momentum range p_t^Y < 50GeV and rapidity range $|y^Y|$ < 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are


 $\sigma(pp \rightarrow Y(1S)X)$. B(Y(1S) $\rightarrow \mu^{+}\mu^{-}) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34)$ nb,


 $\sigma(pp \rightarrow Y(2S)X)$. B(Y(2S) $\rightarrow \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09)$ nb,

 $\sigma(pp \rightarrow Y(3S)X). B(Y(3S) \rightarrow \mu^{+} \mu^{-}) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04)nb,$

- GEN filter efficiency in similar kinematic region: $22.4\% \pm 1.32\%$
- A rough estimation of x-sec integrated over the Y pT< 40GeV and |y| < 2.4 @ 13.6 TeV : 45.754 × 22.4% = 10.259nb

