

Fiducial and differential cross-section measurements of EW Wγjj production at 13TeV with the ATLAS detector

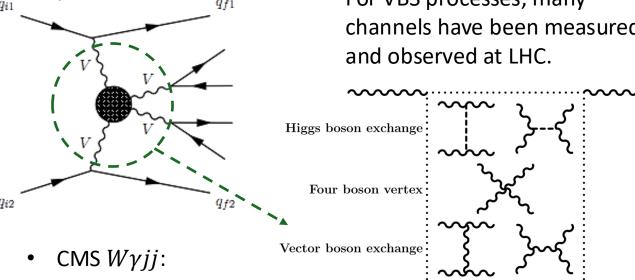
Jing Chen

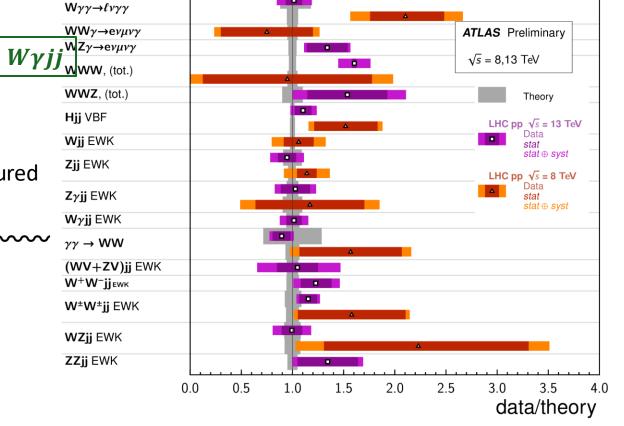
CLHCP2024

Introduction

productions.

Phys. Lett. B 811 (2020) 135988


Phys. Rev. D 108 (2023) 032017

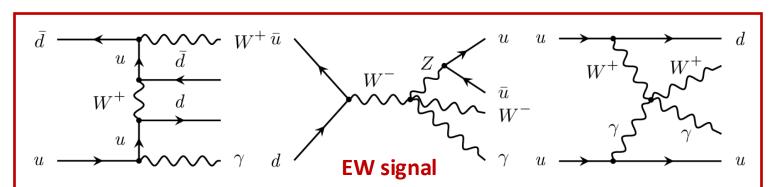

Vector boson scattering (VBS) measurements offers an important way to probe electroweak symmetry breaking.

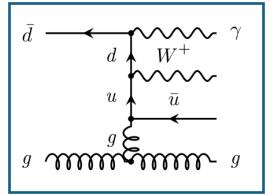
Sensitive to new physics: probe aTGC, aQGC ...

A good probe of the SM in the electroweak (EW) sector. Measure VBS via the corresponding EW

For VBS processes, many channels have been measured

VBF, VBS, and Triboson Cross Section Measurements

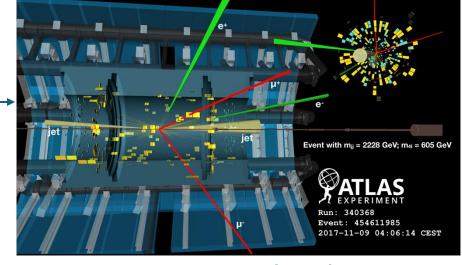

 $\gamma\gamma\gamma$


 $Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$

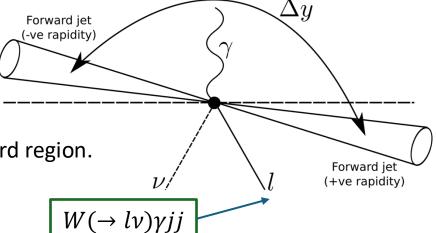
1st observation of EW Wyjj at ATLAS.

Wyjj

- EW $W(\rightarrow l\nu)\gamma jj$:
 - Observation of EW $W\gamma jj$ production.
 - **Differential cross-section** measurements.
 - Limits on aQGC.
- Full Run2 datasets (140 fb^{-1}).



- Perform measurement in **VBS-enhanced** phase space.
 - two energetic jets in the forward and backward region.
 - High m_{ij} , large Δy_{ij} .


Irreducible QCD background

Nature Physics 19 (2023) 237-253

Analysis strategy

Observation and fiducial cross section measurement

- A control region (CR) is defined to constrain the QCD background.
- Data driven method is used to estimate all non-prompt, fake, pileup backgrounds.
- Fit the Neural Network (NN) output to extract the signal strength (μ_{EW}).
- Fiducial cross-section is obtained by correcting the detector effects.

Differential cross section measurement

- Three CRs are defined to constrain QCD background.

$$\Delta \phi_{jj} = \phi_f^j - \phi_b^j \leftarrow y_f^j > y_b^j$$

- Observables: m_{jj} , p_T^{jj} , p_T^l , $m_{l\gamma}$ (VBS observables, sensitive to aQGC), $\Delta\phi_{jj}$, $\Delta\phi_{l\gamma}$ (Charge conjugation and Parity observables, probe CP structure). $\Delta\phi_{l\gamma} = \phi_f - \phi_b \quad \leftarrow \quad y_f > y_b$

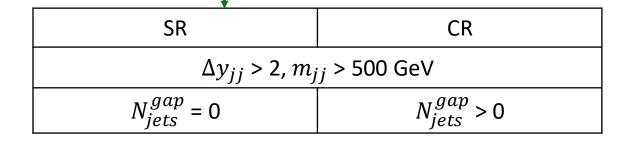
EFT interpretation: The six unfold observable distributions are used to constrain dimension-8
 (D-8) operators (sensitive to quartic gauge couplings).

Object & event selection

object selection:

γ	lepton	Jets	
 At least 1 tight and isolated γ. p_T > 22 GeV. η < 2.37. 	- 1 tight and isolated lepton. - $p_T > 30$ GeV. - $ \eta < 2.5$. - 2^{nd} lepton veto.	 At least 2 jets. p_T > 50 GeV. η < 4.4. No b-jets (DL1r at 85%WP) 	

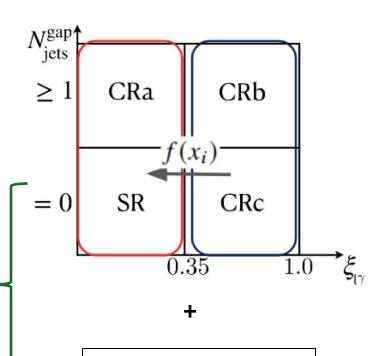
Event selection:


-
$$m_T^W > 30 \text{ GeV}.$$

-
$$m_T^W$$
 > 30 GeV. - $\left|m_{l\gamma}-m_Z\right|$ > 10 GeV.

-
$$E_T^{miss} > 30 \,\text{GeV}$$
.

- Standard object overlap removal.


Observation & fiducial cross-section

Differential crosssection

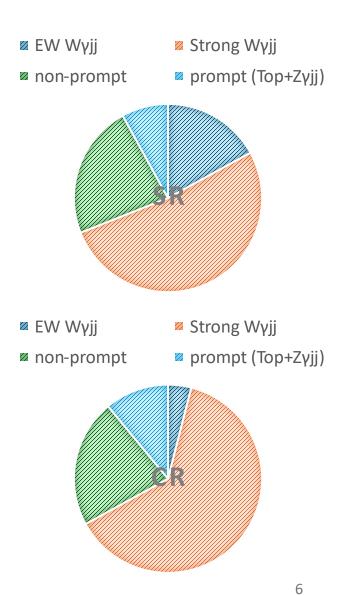
 N_{jets}^{gap} :Number of jets in rapidity gap Δy .

ζ _	1,7	$\frac{(y_{j1}+y_{j2})}{2}/(y_{j1}-y_{j2})$
$\zeta l \gamma$ –	$ y_{l\gamma} ^{-1}$	$\frac{1}{2}$ / $(y_{j1} - y_{j2})$

 $\Delta y_{jj} > 2$ $m_{ii} > 1000 \text{ GeV}$

Background estimation

QCD background:


- Main background.
- Strong $W\gamma jj$.
- A control region is defined to constrain the QCD background.
- Simultaneously fit the NN output in signal region and control region.

Prompt background:

- Top + $Z\gamma jj$.
- Estimate by using MC simulation.

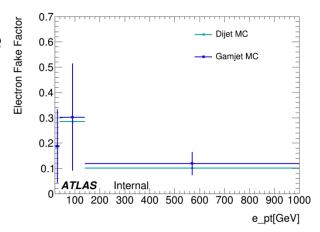
Non-prompt background:

- **Jet fake photon**: Largest non-prompt background (W+jet). A data-driven **template fit** is used.
- **Jet fake lepton**: Leptons arising from mis-reconstructed jets or in-flight decays of hadrons. **Fake factor** method is used.
- **Electron fake photon**: Arise from conversions and inefficient calorimeter to track matching (Z+jets & $t\bar{t}$). **Tag & probe** method is used.
- **Pile-up photon**: A photon originating from one pp interaction is selected alongside a Wjj event from another pp interaction from the same bunch crossing. Data driven method is used.

Background estimation

Jet fake photon:

- Prompt γ isolation shape \leftarrow tight ID γ .
- Non-prompt γ isolation shape \leftarrow non-tight ID γ .
- Uncertainties: Stat. uncertainty in template & fit, choice of γ ID criteria, real γ subtraction , $E_T^{iso,\gamma}$ modelling.
- ABCD method is used to cross check.


Jet fake lepton:

Fake efficiency: $\epsilon = \frac{N_e^{tight}}{N^{loose}} \qquad \text{Fake factor:} \quad F = \frac{\epsilon}{1 - \epsilon}$

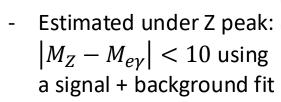
Fake lepton background in SR:

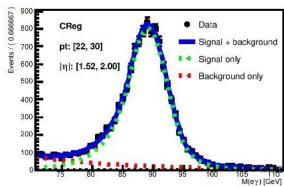
$$N_{fakelep} = F_{e/\mu} \times (N_{e/\mu-data}^{anti-tight} - N_{e/\mu-prompt-lepton}^{anti-tight})$$

- Dijet sample is used to get fake factors. A closure test has performed between dijet and gamjet samples.
- Fake factor with different p_T and η bins are measured.

Uncertainties: Stat., jet composition uncertainty (γ + jet vs dijet), variation of selection cuts, prompt lepton subtraction with different QCD MC samples, variation of p_T , η binning of fake factor, background subtraction in dijet region.

Background estimation




Electron fake photon:

- Fake and real enriched regions defined by the presence of a probe electron or a probe photon.
- Fake rate: $F_{e \to \gamma} = \frac{N_{\gamma}^{reco} \epsilon_{\gamma}}{N^{reco} \epsilon_{\gamma}}$

 $\epsilon_{\gamma},\epsilon_{e}$:the identification efficiency for γ and e.

- uncertainties: Stat., variation of fit range, integration range, p_T , η binning, different fit function in the fit.

$$F_{e \to \gamma} = \frac{N_{e\gamma}}{2N_{ee}} = \frac{S_{e\gamma} + B_{e\gamma}}{2(S_{ee} + B_{ee})} = \frac{S_{e\gamma} + S_{e\gamma}(\frac{1}{S/B})}{2(S_{ee} + S_{ee}(\frac{1}{S/B}))} = \frac{S_{e\gamma}}{2S_{ee}} \frac{(1 + \frac{1}{S/B})}{(1 + \frac{1}{S/B})} = \frac{S_{e\gamma}}{2S_{ee}}$$
Event yields:

Pile-up photon

Pile-up fraction:

$$f_{PU} = \frac{N_{data}^{|\Delta z| > 50mm} - N_{MC}^{|\Delta z| > 50mm} * C}{N_{data} * 0.32}$$

C is a normalization factor derived by comparing the MC to data.

- Only converted photons with hits in the silicon tracker are used to ensure good resolution.
- Real photon purity is applied to fake fraction to avoid double counting pileup jets with fake photons.
- $f_{pu} = (1.7 \pm 1.6)\%$ in SR.

$SR^{fid} \left(N_{\text{jets}}^{\text{gap}} = 0 \right)$	$CR^{fid} \left(N_{\text{jets}}^{\text{gap}} > 0 \right)$
520 ± 141	120 ± 49
1550 ± 830	1970 ± 950
692 ± 57	698 ± 58
109 ± 18	183 ± 37
128 ± 34	163 ± 77
3000 ± 830	3140 ± 960
3341	3143
	520 ± 141 1550 ± 830 692 ± 57 109 ± 18 128 ± 34 3000 ± 830

Observation & fiducial cross-section

Signal extraction:

Strate 1600 - ATLAS √s = 13

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

- EW $W(\rightarrow lv)\gamma jj$

CRfid

1200 Post-Fit

1000

800

600

400

200

Data / Pred.

 Simultaneously fit the NN output in signal region and control region.

EW Wγjj

Top Bkg.

/// Uncertainty

NN score

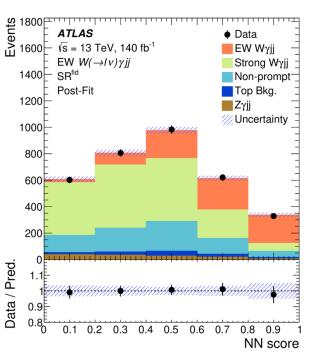
Zγjj

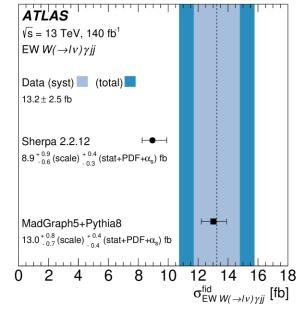
Strong Wyji

Non-prompt

- Two floating normalization factors: μ_{EW} & μ_{strong} .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

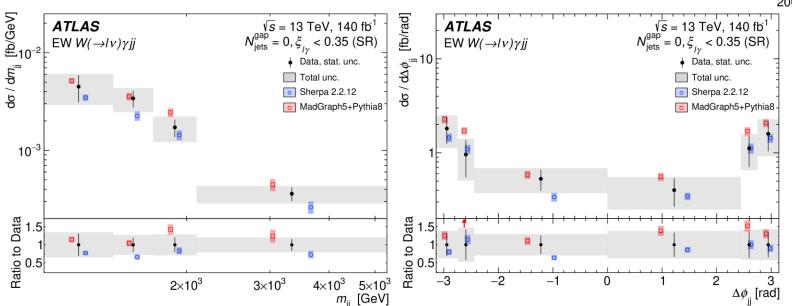

Observation:

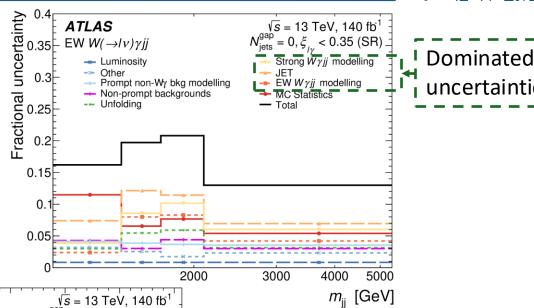

- $\mu_{EW} = 1.5 \pm 0.5$.
- Observed (expected) significance: 9.0σ (6.3 σ) 1st observation at ATLAS!

 $C_{EW\ W\gamma jj} = \frac{1}{Nfid.}$

Fiducial cross-section:

$$\sigma_{\text{EW }W\gamma jj}^{\text{fid}} = \frac{N_{\text{EW }W\gamma jj}}{L \cdot C_{\text{EW }W\gamma jj}}$$

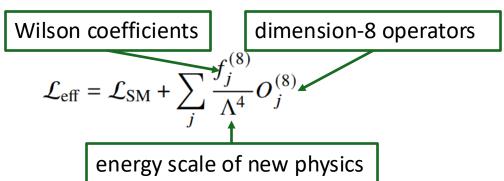



Uncertainty Source	Fractional Uncertainty [%]	=
MC Statistics	11	Dominant
Jets	8	
Lepton, photon, pile-up	8	
EW $W\gamma jj$ modelling	7	Large JES
Data Statistics	6	& JER
Strong $W\gamma jj$ modelling	6	Q JEIN
Non-prompt background	2	
Luminosity	2	
Other Background modelling	2	
$E_{ m T}^{ m miss}$	1	_

Differential cross-section

Signal extraction:

- SR + 3CRs: defined by N_{jets}^{gap} & $\xi_{l\gamma}$.
- Observables: m_{jj} , p_T^{jj} , p_T^l , $m_{l\gamma}$, $\Delta\phi_{jj}$, $\Delta\phi_{l\gamma}$.
- Simultaneously fit in signal and control regions with bin by bin reweighting of signal and QCD components in each region.
- The extracted yields are unfolded to produce differential cross sections.


Differential cross-section:

 The predictions from both MadGraph5+Pythia8 and Sherpa are in agreement with the data within uncertainties.

EFT interpretation

• The effective Lagrangian:

• The differential cross-section can be decomposed into 3 terms: $scales linearly w/f_i^{(8)}$

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2Re(\mathcal{M}_{SM}^* \mathcal{M}_{D-8}) + |\mathcal{M}_{D-8}|^2$$

Wγjj:

- scales quadratically w/ $f_j^{(8)}$
- Sensitive to potential anomalous quartic couplings of $WW\gamma\gamma$ & $WW\gamma Z$.
- p_T^{jj} (most sensitive to tensor-type operators), p_T^l (most sensitive to mixed-scalar operators).
- Constraints on the f_{T3} and f_{T4} operators: **1**st such limits at the LHC.

Coefficien	ts [TeV ⁻⁴]	Observable	$M_{W\gamma}$ cut-off [TeV]	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
f_{T0}/Λ^4		p_{T}^{jj}	-	[-2.4,2.4]	[-1.7,1.8]
f_{T1}/Λ^4		$p_{\mathrm{T}}^{ ilde{\jmath}j}$	-	[-1.5,1.6]	[-1.1, 1.2]
f_{T2}/Λ^4	Toncor	$p_{\mathrm{T}}^{\widehat{j}j}$	-	[-4.4,4.7]	[-3.1,3.5]
f_{T3}/Λ^4	Tensor-	$p_{\mathrm{T}}^{\hat{j}j}$	-	[-3.3,3.5]	[-2.4, 2.6]
f_{T4}/Λ^4	type	$p_{ m T}^{ar{\jmath}j}$	-	[-3.0,3.0]	[-2.2,2.2]
f_{T5}/Λ^4	operato	ors $p_{\mathrm{T}}^{\hat{j}j}$	1.1	[-9.9,9.9]	[-7.5,7.5]
f_{T6}/Λ^4	орстасс	$p_{\mathrm{T}}^{ ilde{\jmath}j}$	1.3	[-7.4,7.6]	[-5.2, 5.4]
f_{T7}/Λ^4		$p_{ m T}^{ar{\jmath} j}$	-	[-3.8, 3.9]	[-2.7, 2.8]
f_{M0}/Λ^4		p_{T}^{l}	-	[-38,37]	[-38,37]
f_{M1}/Λ^4		p_{T}^{I}	-	[-57,58]	[-41,42]
f_{M2}/Λ^4	Mixed-	p_{T}^{I}	0.8	[-110,110]	[-88,82]
f_{M3}/Λ^4	ccalar	p_{T}^{l}	1.1	[-100,110]	[-73,77]
f_{M4}/Λ^4	scalar	p_{T}^{I}	1.0	[-118,111]	[-89,83]
f_{M5}/Λ^4	operato	ors p_{T}^{l}	1.3	[-57,80]	[-32,77]
f_{M7}/Λ^4	•	p_{T}^{I}	-	[-96,95]	[-69,68]

Coefficients [TeV ⁻⁴]	Observable	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
f_{T0}/Λ^4	$p_{ m T}^{jj}$	[-2.4, 2.4]	[-1.8, 1.8]
f_{T1}/Λ^4	$p_{ m T}^{ar{j} j}$	[-1.5, 1.6]	[-1.1, 1.2]
f_{T2}/Λ^4	$p_{ m T}^{ ilde{\jmath}j}$	[-4.4, 4.7]	[-3.1, 3.5]
f_{T3}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.3, 3.5]	[-2.4, 2.6]
f_{T4}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.0, 3.0]	[-2.2, 2.2]
f_{T5}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-1.7, 1.7]	[-1.2, 1.3]
f_{T6}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-1.5, 1.5]	[-1.0, 1.1]
f_{T7}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.8, 3.9]	[-2.7, 2.8]
f_{M0}/Λ^4	p_{T}^{l}	[-28, 28]	[-24, 24]
f_{M1}/Λ^4	p_{T}^{f}	[-43, 44]	[-37, 38]
f_{M2}/Λ^4	p_{T}^{I}	[-10, 10]	[-8.6, 8.5]
f_{M3}/Λ^4	p_{T}^{I}	[-16, 16]	[-13, 14]
f_{M4}/Λ^4	p_{T}^{f}	[-18, 18]	[-15, 15]
f_{M5}/Λ^4	p_{T}^{f}	[-17, 14]	[-14, 12]
f_{M7}/Λ^4	p_{T}^{t}	[-78, 77]	[-66, 65]

Summary

- **1**st **observation** of EW $W\gamma jj$ at ATLAS.
 - $\mu_{EW} = 1.5 \pm 0.5$.
 - Observed (expected) significance: 9.0σ (6.3 σ).
- Measurements of EW $W\gamma jj$ fiducial and differential cross-section are reported.
 - $\sigma_{EW}^{fid} = 13.2 \pm 2.5 \, fb$.
 - Differential cross-sections are measured as functions of six kinematic observables.
 - The data are corrected for detector effects of inefficiency and resolution using an iterative Bayesian **unfolding** method.
 - These differential measurements are used to **search for anomalous quartic boson interactions** using D-8 operators in the context of an effective field theory.
 - The first LHC constraints on f_{T3} and f_{T4} are presented.
- Publication: <u>Eur. Phys. J. C 84 (2024) 1064</u>

谢谢!

Particle level definition

Object	Selection requirements		
Dressed muons	$p_{\rm T} > 30~{\rm GeV}$ and $ \eta < 2.5$		
Dressed electrons	$p_{\rm T} > 30 \ {\rm GeV} \ {\rm and} \ \eta < 2.47 \ ({\rm excluding} \ 1.37 < \eta < 1.52)$		
Isolated photons	$E_{\rm T}^{\gamma} > 22$ GeV and $ \eta < 2.37$ (excluding 1.37 $< \eta < 1.52$) and $E_{\rm T}^{\rm iso} < 0.2 E_{\rm T}^{\gamma}$		
Jets	At least two jets with $p_T > 50$ GeV and $ y < 4.4$, b -jet veto		
Missing transverse momentum	$E_{\rm T}^{\rm miss} > 30 \text{ GeV} \text{ and } m_{\rm T}^W > 30 \text{ GeV}$		
VBS topology	$N_{\ell} = 1, N_{\gamma} \ge 1, m_{\ell\gamma} - m_Z > 10 \text{ GeV}$		
	$\Delta R_{\min}(\ell, j) > 0.4, \ \Delta R_{\min}(\gamma, j) > 0.4, \ \Delta R_{\min}(\ell, \gamma) > 0.4$		
	$\Delta R_{\min}(j_1, j_2) > 0.4, \ \Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$		
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1}, p_{\text{T}}^{j2} > 50 \text{ GeV}$		
	$m_{jj} > 500 \text{ GeV}, \ \Delta y_{jj} > 2$		
Fiducial measurement	VBS topology		
Differential measurement	VBS topology \oplus ($m_{jj} > 1000$ GeV, $N_{\text{jets}}^{\text{gap}} = 0$, and $\xi_{W\gamma} < 0.35$)		

MC samples

Signal. Sh-2.2.11 Nominal, MG5 systematic

Irreducible bkg. Sh-2.2.11 Nominal, MG5 systematic

Reducible prompt bkgs.

Non-prompt backgrounds used for DD fakes estimates

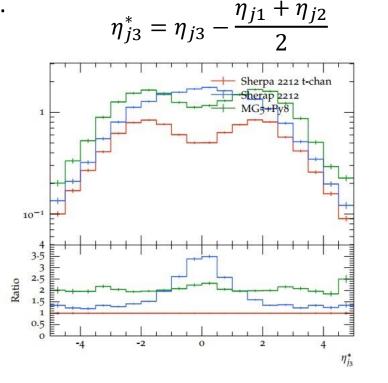
Process	Prompt/Non-prompt	Generator	ME Accuracy	PDF	Shower & Hadronization	Parameter Tune
EW Wγjj	Prompt	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
		Sherpa 2.2.12	LO	NNPDF3.0 NLO	Sherpa	Default
QCD Wγjj	Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
	J	Madgraph5	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
EW Zγjj	Prompt	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
QCD Zγjj	Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
tīγ	Prompt	Madgraph5	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
tWγ	Prompt	Madgraph5	LO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
$tq\gamma$	Prompt	Madgraph5	LO	NNPDF3.0 NLO	Herwig7+EvtGen	Default
Single Top	Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
W+jets	Non-Prompt	Sherpa 2.2.11	NLO	NNFDF3.0 NNLO	Sherpa	Default
Z+jets	Non-Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NNLO	Sherpa	Default
Diboson	Non-Prompt	Sherpa 2.2.12	NLO	NNPDF 3.0 NNLO	Sherpa	Default
Dijet	Non-Prompt	Pythia8	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
EW Wjj	Non-Prompt	Sherpa 2.2.1	LO	NNPDF3.0 NNLO	Sherpa	default
EW Zjj	Non-Prompt	Sherpa 2.2.1	LO	NNPDF3.0 NNLO	Sherpa	default
$t\bar{t}$	Non-Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
t W	Non-Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14

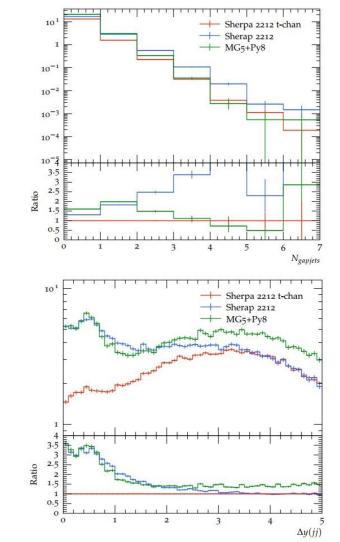
MadGraph & Sherpa signal comparison

The difference certainly comes from having the 3rd jet included in the matrix element in Sherpa.

 Diagrams with gluon emission from the incoming or outgoing quarks interfere destructively, resulting in a suppression of centrally produced jets. (<u>More details</u>)

• Sherpa sample predicts more hadronic activity in the gap


between the two leading jets.


*m*_{ii}>500GeV

10-1

Ratio

Sherap 2212

