

Diboson Polarization Fraction measurement and Radiation Amplitude Zero (RAZ) effect in WZ production at ATLAS

Zhenyu Zhao (On behalf of the HighPT WZ analysis group) CLHCP-QingDao -- 11/15/2024

PRL published: Phys. Rev. Lett. 133, 101802

Motivation

• Polarization of the vector boson: an important target in SM&BSM research

- Closely linked to Electroweak Symmetry Breaking
- Longitudinal (L) polarization playing a particularly significant role
- Our analysis: dedicated on the High PT WZ analysis
 - For high PT region, the measurement is more sensitive to the BSM effects
 - Aiming to increase the LL fraction and improve the discrimination of LL polarization

Longitudinal boson: physical characteristic

- The Goldstone Boson Equivalence Theorem
 - Longitudinal polarized boson ~ goldstone particle at high mass approximation, the (Yukawa) couplings is proportional to fermion mass m_f
 - Therefore, the t-channel and u-channel is suppressed
- LL events are mostly from s-channel
 - $\left|\mathcal{M}_{WZ}^{LL}\right|^2 \sim \sin^2 \theta_V$, so LL events tend to have larger PT
 - TGC vertex in the s-channel provides sensitivity to potential new physics signatures

Radiation Amplitude Zero (RAZ) effect

Consider LO contribution for TT polarization

- W^+Z^- and W^-Z^+ contribution in s-channel is forbidden by angular momentum conservation
- TT polarization is mainly from t- and u- channel

• RAZ effect

- For t- and u- channel, RAZ effect suppress the TT contribution at the LO
- In our fiducial region, we require P_T^{WZ} to be small, to enhance the RAZ effect

• Observation on the RAZ effect

- When $\cos \theta_V = 0$, $\left| \mathcal{M}_{WZ}^{TT} \right|^2 \sim 0$, this can be reflect in the ΔY_{WZ} distribution
- A depth observable is used to quantify the magnitude of the dip

Related analysis

• Previous measurements

Phys. Lett. B 843 (2023) 137895

- Polarization fraction measurement for the WZ process at the inclusive region
- Polarization measurement for ZZ production JHEP 2312 (2023) 107
- RAZ measurement for Wγ process Phys. Rev. Lett. 100 (2008) 241805

• Particularity and difficulties in this analysis

- Polarization fraction measurement dedicated on the high PT region
 - Raise the LL events purity
 - Show more sensitivity to the BSM effects
- Hard to observe the RAZ effect before due to the large contamination of LL events
 - The accumulated luminosity, and the development of the MC simulator, allows to make this observation for the first time

PRL published: Phys. Rev. Lett. 133, 101802

Measurements with full-Run2 data

• Data and process:

• Full run2 13TeV 140fb⁻¹ data: $pp \rightarrow WZ \rightarrow \ell \ell \ell \nu \ (\ell = e/\mu)$

• Aiming for: f_{LL} measurement

- $P_{WZ}^T < 70$ GeV, HighPT region with 2 P_T^Z bins
- Use BDT to make measurement
 - Low PT bin observation with 5.3σ
 - High PT bin limited by statistics

P_T^{WZ}	P_T^Z (GeV)	f _{LL}	Significance
< 70GeV	[100, 200)	$0.174\pm^{0.024}_{0.025}$	5 .3 <i>σ</i>
	[200, +∞)	$0.16\pm^{0.06}_{0.06}$	1.6 <i>σ</i>

PRL published: Phys. Rev. Lett. 133, 101802

Measurements with full-Run2 data

Aiming for: RAZ effect observation

- Require $P_{WZ}^T < 70, 40, 20$ GeV, and without P_Z^T cut
- Depth observable (For TT events):

$$D = 1 - \frac{N(|\Delta Y| \in [0, 0.5))/0.5}{N(|\Delta Y| \in [0.5, 1.5))}$$

- A first observation on the WZ RAZ effect, but with a limited statistics
- Run3: more detailed analysis & construct other observables

Run3 proposal

Thanks for your attention!

Run3 prospect

 f_{LL} measurement with finer binning (spectrum measurement)

Higher precision measurement at very High PT region

Invest detailed RAZ measurement

LL events differential xsec measurement

2024/11/15

backups

Angular distribution in different polarization state

- 0: longitudinally polarized (L)
- ±1: transversely polarized (*T*)

Radiation Amplitude Zero (RAZ) effect

- When $\cos \theta_V = 0$, $\left| \mathcal{M}_{WZ}^{TT} \right|^2 \sim 0$
- However, we do not use $\cos \theta$ to observe
 - The costheta spectrum is diluted, and the dip is filled, it is hard to measure
 - Instead of reconstructing a precise WZ frame, the DeltaY spectrum can be measured in the lab frame
- Use the ΔY_{WZ} distribution instead

Background estimation

- Irreducible background (~10%)
 - VBS-WZ, ZZ, Tri-boson, $t\bar{t}V$ ٠
- **Reducible background (~5%)** (non-Prompt)
 - $Z + \text{jet} \rightarrow ll + \text{jet}(l)$ fake W decay lepton ٠
 - $Z + \gamma \rightarrow ll + \gamma(l)$ fake W decay lepton ٠
 - •

Matrix Method

$$\begin{pmatrix} N_{TTT} \\ N_{TTL} \\ N_{TLT} \\ N_{TLT} \\ N_{TLL} \\ N_{LTL} \\ N_{LTL} \\ N_{LLT} \end{pmatrix} = \begin{pmatrix} e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e_1f_2e_3 & f_1e_2e_3 & e_1f_2f_3 & f_1e_2f_3 & f_1f_2e_3 \\ e_1e_2e_3 & e_1e_2f_3 & e$$

$$N_{fake} = N_{TTT} - e_1 e_2 e_3 N_{RRR} = [N_{TTL} - N_{TTL}^{irr}] \frac{f_3}{\bar{f}_3} + [N_{TLT} - N_{TLT}^{irr}] \frac{f_2}{\bar{f}_2} + [N_{LTT} - N_{LTT}^{irr}] \frac{f_1}{\bar{f}_1}$$

$$-[N_{TLL} - N_{TLL}^{irr}] \frac{f_2}{\bar{f}_2} \frac{f_3}{\bar{f}_3} - [N_{LTL} - N_{LTL}^{irr}] \frac{f_1}{\bar{f}_1} \frac{f_3}{\bar{f}_3} - [N_{LLT} - N_{LLT}^{irr}] \frac{f_1}{\bar{f}_1} \frac{f_2}{\bar{f}_2}$$

Fake rate: $F_i = \frac{f_i}{\bar{f}_i}$

Irreducible (prompt): MC estimation **Reducible (non-prompt): data-driven estimation**

Measure the Tight selection cut efficiency for fake leptons in data:

Pass Tight efficiency Fake rate: Unpass Tight efficiency

 γ /light flavor jet fake leptons, measured in Z + jet/Z γ CR

 $t\bar{t} \rightarrow WbWb \rightarrow l\nu + b + l\nu + b(l)$ fake Z decay lepton } Heavy flavor jet fake leptons, measured in $t\bar{t}$ CR

