

Search for a new Z' gauge boson via the $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm} \nu$ process with the ATLAS detector

Ηαο Χυ

University of Science and Technology of China

On behalf of the ATLAS Collaboration

CLHCP2024, Nov13-Nov17 2024, Qingdao

Introduction

- Different models have predicted the existence of Z' to address the problems in the Standard Model
 - Grand Unified Theories with a larger unification group containing new symmetries
 - Predicts at least one extra neutral gauge boson: Z'
- The lepton family numbers L_e , L_μ , L_τ are conserved under the Standard Model
- $L_1 \equiv L_e L_\mu$, $L_2 \equiv L_e L_\tau$, and $L_3 \equiv L_\mu L_\tau$ are anomaly-free and can be gauged with a new neutral gauge boson introduced to the theory
 - Coupling to the electron is strictly constrained by the very precise $e^+e^- \rightarrow e^+e^-$ LEP data
- Still some potential and opportunities for the $U(1)_{L_{\mu}-L_{\tau}}$ model

Standard Model of Elementary Particles

The Simplest Z' model

- $U(1)_{L_{\mu}-L_{\tau}}$ symmetry is broken with resulting a massive gauge boson Z'
 - Z' only couples to the leptons of the second and third generation
 - Model contains two additional parameters $\{g_{Z'}, M_{Z'}\}$
- Potentially address some observed anomalies which could answer the dark matter and neutrino mass problems
 - PhysRevLett.126.141801:Muon anomalous magnetic moment
 - arXiv:2206.07501v2:Semileptonic B decay

3

Constraints on Z' parameter space

ATLAS EXPERIMENT

- Contribution to neutrino trident production
 - <u>arXiv:1406.2332</u> Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams
 - Providing **upper** bounds
- Correction to B_s meson oscillations
 - PhysRevD.89.095033 Quark flavor transitions in $L\mu$ – $L\tau$ models
 - Providing lower bounds

Contribution to neutrino trident production CCFR measurement Correction to B_s meson oscillations LHCb measurement

Constraints on Z' parameter space

- Large cross section of Drell-Yan process on LHC
- Previous search with 4μ final state on LHC
 - <u>CMS, 2019</u> (77.3 fb^{-1})
 - <u>ATLAS, 2023</u> (139 fb^{-1})
- First time to use the 3μ final state to search this Z'
 - Expected to provide better sensitivity in the high mass region
 - PhysRevD.110.072008

Signal signature

- Signal process: $pp \rightarrow W^{(*)} \rightarrow Z' \mu \nu \rightarrow \mu \mu \mu \nu$
 - 3μ plus missing transverse momentum
- Major background
 - Vector boson pair production
 - Drell-Yan process, Top quark pair production
- Candidate events in the signal region:
 - Exactly three isolated muons and large missing transverse momentum
 - Focusing on the low mass region: [5, 81] GeV

Signal process: $pp \to W^{(*)} \to Z' \mu v \to \mu \mu \mu v$

Background modeling

- Prompt background: events containing prompt muons
- Vector boson pair production
- Estimated by MC simulation
- Non-prompt background: events containing at least one non-prompt muon from hadron decays or misidentification of jets
 - Drell-Yan process, top quark pair production
 - Estimated by fake factor method with real data

Multivariate analysis

- Parameterized deep neural network (pDNN): Combine several discriminating variables into a single discriminant
 - One classifier to handle the whole parameter grid
 - Convenient to extrapolate to other signal models
- Input features
 - Muon kinematics, missing transverse momentum
 - Di-muon mass of leading muon pair Z_1 and subleading muon pair Z_2 , angle between muons with muon pairs
 - Scalar(Vector) sum of transverse momentum of all physics objects
- The reconstruction of Z' mass resonance depends on their truth mass
 - Two different classifiers for low-mass and highmass regions

Statistical interpretation

- Binned profile-likelihood function and simultaneous fit
- p_0 -values scan in mass range [5, 81] GeV
 - no significant data excess
- Set observed (expected) upper limits at 95% CL on cross section

Combination

ATLAS EXPERIMENT

- Statistical combination with previous search using neutral-current Drell-Yan process (4μ final state)
 - Common POI: coupling parameter $g_{Z'}$
- Significant improvement relative to the previous search
- Events / 0.8 Ge/ ATLAS Data Data Events / 10⁶ ATLAS $\cdots W^{(^{*})} \rightarrow Z' \mu^{\pm} v \text{ (m_s=19 GeV, g_s=0.0085)} \times 50$ vs = 13 TeV, 140 fb 80 √s = 13 TeV, 139 fb⁻¹ ···· Z $\rightarrow \mu\mu$ Z' (15 GeV, g=0.012) $\rightarrow l^{+}l^{+}l^{+}l^{-}$ Post-Fit $a\overline{a} \rightarrow f \nu f \overline{f}$ SM Z(Z*) Non-prompt background Other backgrounds 10⁴ ///Uncertainty 10³ 10 буд 1.35 / 1 / Bkg 0.65 Data 0.2 0.3 0.5 0.6 0.4 0.7 pDNN score m₇₂ [GeV] 3μ channel 4μ channel

arXiv:2301.09342v2

Summary

- Search for a $L_{\mu} L_{\tau}$ gauge boson Z' using charged-current Drell-Yan production for the first time at the LHC
- Benefits from much higher Z' production cross section compared to the previous search using the neutral-current Drell-Yan process
 - Better sensitivity especially in the high mass region
- The most stringent exclusion limits to date are set in the allowed parameter space of the Z' coupling strength and $m_{Z'}$
- Using the 3μ final state is expected to be more sensitive in the high mass range beyond Z peak with experiments in high luminosity

Summary

- Search for a $L_{\mu} L_{\tau}$ gauge boson Z' using charged-current Drell-Yan production for the first time at the LHC
- Benefits from much higher Z' production cross section compared to the previous search using the neutral-current Drell-Yan process
 - Better sensitivity especially in the high mass region
- The most stringent exclusion limits to date are set in the allowed parameter space of the Z' coupling strength and $m_{Z'}$
- Using the 3μ final state is expected to be more sensitive in the high mass range beyond Z peak with experiments in high luminosity

Thank you for your attention!

Backup - Simulated Z' signal information

$m_{Z'}$ [GeV]	8Z'	$\Gamma_{Z'}$ [GeV]	σ [fb]	$m_{Z'}$ [GeV]	8Z'	$\Gamma_{Z'}$ [GeV]	σ [fb]
5	0.0050	9.553×10^{-6}	28.13	9	0.0065	3.016×10^{-5}	23.22
15	0.0080	7.636×10^{-5}	15.52	19	0.0085	1.092×10^{-4}	10.67
23	0.0090	1.482×10^{-4}	7.397	27	0.0095	1.939×10^{-4}	5.086
31	0.0110	2.985×10^{-4}	4.183	35	0.0120	4.011×10^{-4}	3.001
39	0.0150	6.983×10^{-4}	2.751	45	0.0230	1.894×10^{-3}	2.768
51	0.0370	5.556×10^{-3}	2.803	54	0.0480	9.901×10^{-3}	2.863
60	0.0850	3.450×10^{-2}	3.145	66	0.1800	0.1702	5.483
69	0.2500	0.3432	7.451	75	0.3500	0.7311	9.222
81	0.4000	1.031	8.891				

Backup - Selection efficiency

$m_{Z'}$ [GeV]	5	19	39	60	81
Number of identified muons (looser muons) = $3(< 4)$	2.7%	7.0%	11.8%	18.8%	36.2%
$p_{\mathrm{T},i}(i=1,2,3) > 20, 10, 7 \text{ GeV}$	33.6%	52.8%,	87.4%	85.7%	97.9%
Number of b -jets = 0	98.5%	97.5%	98.5%	98.4%	97.9%
$E_{\rm T}^{\rm miss} > 15 { m GeV}$	64.1%	72.5%	60.1%	72.2%	92.6%
$m_{Z_1} < 85 \text{ GeV}$	100%	99.2%	97.8%	72.5%	43.1%
Combined event selection efficiency	0.6%	2.6%	6.0%	8.3%	13.8%

Backup - Phenomenology study

- Sensitivity of this Z' search on LHC using 2μ , 3μ (Simulation only) and 4μ (<u>CMS</u>, <u>2019</u>) final states
- 2μ and 3μ results are optimized with neural network
- 3μ result gets significant improvement with the implement of neural network
 - expected to provide the best sensitivity in the high mass region