

CLHCP 2024 **Prompt** $J/\psi J/\psi$ **Cross Section Measurement**

Muhammad Ahmad³, Gerry Bauer¹, Zhen Hu¹, Hongbo Liao² , Zhengchen Liang¹, **Jinfeng Liu**¹, Ruobing Tu², Kai Yi^{1,4}, Taozhe Yu², Shunliang Zhang¹

- 1. Tsinghua University, China
- 2. Institute of High Energy Physics, China
- 3. Texas A&M University
- 4. Nanjing Normal University, China

- Simultaneously produced $J/\psi J/\psi$ was first observed by NA3 group
- The main contribution of this channel is expected from parton scattering, including single parton scattering (SPS) and double parton scattering (DPS). Resonances (ccccc) are also predicted to be found in this channel.
- Aim: measure prompt cross section in $J/\psi J/\psi$ final state using 2016 dataset
 - With decay channel: $J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - Main contribution is from SPS and DPS
 - SPS/DPS fraction can be estimated

SPS DPS

- Production cross section measurement is meaningful for QCD study:
 - Supposed to add valuable information to solve the puzzle of the production of quarkonium.
 - Provide an unique insight into the parton structure.
 - Measurement of DPS process serves as another estimation of the effective cross section.
- Measured widely in LHC:

Group	Energy	Fiducial Volume	Result		
	7TeV	$2 < \eta < 4.5, p^T < 10 { m GeV}$	(5.1 ± 1.0)nb		
	13TeV	$2 < \eta < 4.5, p^T < 14 \text{GeV}$	(16.4 ± 0.28)nb		
ALICE	13TeV	$2.5 < \eta < 4$	(10.3 ± 2.3)nb		
ATLAS	TLAS 8TeV $ \eta < 2.1, p^T > 8.5 \text{GeV}$		(29.1 ± 1.8)pb		
CMS	7TeV	$\begin{split} & \eta < 1.2, p^T > 6.5 \text{GeV}, \\ &1.2 < \eta < 1.43, 6.5 \text{GeV} > p^T > 4.5 \text{GeV}, \\ &1.43 < \eta < 2.2, p^T > 4.5 \text{GeV} \end{split}$	(1.49 ± 0.07)nb		

- Event selection
- Single muon
 - Soft muon
 - $|\eta(\mu)| < 2.4, p^T(\mu) > 3.5 \text{ GeV}$
 - RECO level μ matches with HLT level μ
- J/ψ (Opposite sign muons)
 - $2.85 < M(J/\psi) < 3.35 \text{ GeV}$
 - Vertex probability (dimuon) > 0.005
 - $p^T(J/\psi) > 10 \text{ GeV}$
- For MC samples, we also require:
 - GEN level μ matches with RECO level μ
 - GEN level: $|\eta(\mu)| < 2.4, p^T(\mu) > 3.5 \text{ GeV}$
- Two J/ψ s in one candidate are sorted randomly

- HLT Trigger
 - HLT_Dimuon0_Jpsi_Muon
- $\mu^+\mu^-\mu^+\mu^-$
 - Pass $\mu^+\mu^-\mu^+\mu^-$ vertex fit
 - $M(\mu^+\mu^-\mu^+\mu^-) > 7.5 \text{ GeV}$

- Acceptance and efficiency are calculated sequentially against $p^T(J/\psi)$ (10, 40) and $y(J/\psi)$ (-2,2) with variable bin width
- Different acceptance and efficiency maps are calculated for different processes (SPS and DPS) using MC samples
- The dataset has been corrected by the acceptance and efficiency maps
 - Correction is carried out event-by-event
 - Correction is conducted with a weight:
 - $W = \frac{1}{(1-f_{DPS})A_{total}^{SPS}\epsilon_{total}^{SPS} + f_{DPS}A_{total}^{DPS}\epsilon_{total}^{DPS}}$

Acceptance of $p^{T}(\mu)$ (SPS)

〕清莱大学

- To extract the signal yield, a four dimensional fitting is conducted, with the consideration of two sets of background:
 - Combinatorial background
 - Non-prompt background (J/ ψ decayed from B meson)
- The final fitting includes four dimensions: $M(J/\psi_1), M(J/\psi_2), c\tau(J/\psi_1), c\tau(J/\psi_2)$
- And seven components:

口消華大学

• The fitter has been employed on 2016 dataset

• Fitting quality is satisfactory

Cor	nponent	Yield		
	P+P	$\textbf{7340} \pm \textbf{100}$		
J/ψ_1	P+NP			
J/ψ_2	NP+P	2540 <u>+</u> 70		
	NP+NP	21300 ± 200		
J/1	$\psi_1 \mu^+ \mu^-$	2520 120		
μ^+	$\mu^{-}J/\psi_{2}$	2550 <u>+</u> 120		
μ^+	$\mu^-\mu^+\mu^-$	10 ± 40		

〕清莱大学

- Cross section is calculated:
 - N^{corr}
 - $\boldsymbol{\sigma} = \frac{1}{L \times BR^2(J/\psi \to \mu^+ \mu^-)}$
 - *N^{corr}*: Yield of signal acquired from fitting with corrected dataset
 - *L*: Integral luminosity (for 2016, 36.303 fb⁻¹)
 - *BR*: Branch ratio (5.961 ± 0.033)%
- A preliminary result has been acquired with 2016 dataset (under review)
- Differential cross section is calculated similarly against $M(J/\psi_1 J/\psi_2)$, $p^T(J/\psi_1 J/\psi_2)$, $y(J/\psi_1 J/\psi_2)$, $\Delta(y_1, y_2)$ and $\Delta(\phi_1, \phi_2)$ (under review)

- A template fit can be conducted on the distribution of differential cross section to acquire the fraction of DPS component (f_{DPS})
 - The distributions of SPS/DPS can be extracted from MC samples
 - These distributions are employed as templates
 - These template PDFs are utilized to fit the distribution of differential cross section
 - The fit is conducted simultaneously on Δy and $\Delta \phi$ dimensions

• The result is under review

- Systematic uncertainty
- Several sources of systematic error are considered:
 - **1.** Branch ratio($J/\psi \rightarrow \mu^+\mu^-$): Acquired from PDG
 - 2. Integral luminosity: Provided by CMS
 - 3. Acceptance and efficiency correction:
 - Using different correction (different f_{DPS}) causes different yield estimation
 - 4. Model of prompt J/ψ :
 - The $c\tau$ distribution of promptly produced J/ψ is extracted from a SPS/DPS mixing MC sample
 - Different mixing fraction causes different shape
 - 5. Stability of the fitter:
 - The feasibility and robustness of the fitter is tested

- Systematic uncertainty
- Several sources of systematic error are considered:
 - 6. Lifetime variables selection:
 - Another fitting is conducted with an alternative lifetime variables $(Sig_{Lxy1} + Sig_{Lxy2})$, the difference between two fits is taken as an error

	Error [%]
Branch ratio	1.5
Luminosity	2.6
Correction	13.1
<i>cτ</i> shape	4.2
Stability of the fitter	6.0
Lifetime variables	0.3
Total	15.5

- Summary
- We present the cross section measurement for prompt $J/\psi J/\psi$ at 13TeV
 - 1. Acceptance and efficiency are calculated with MC samples
 - The datasets are **corrected with a mixed SPS/DPS** acceptance and efficiency
 - **2.** Fitter is developed $[M(J/\psi_1), M(J/\psi_2), c\tau(J/\psi_1), c\tau(J/\psi_2)]$
 - Fitting to the **2016 dataset** is satisfactory
 - The fitting is employed in different kinematic bins to acquire differential cross section
 - A template fit is conducted and f_{DPS} is acquired
 - 4. Systematic error is estimated
 - 5. A preliminary result is acquired
 - Including total cross section, differential cross section and *f*_{DPS}

CLHCP 2024 Thank You

Muhammad Ahmad³, Gerry Bauer¹, Zhen Hu¹, Hongbo Liao² ,

Zhengchen Liang¹, **Jinfeng Liu**¹, Ruobing Tu², Kai Yi^{1,4}, Taozhe Yu², Shunliang Zhang¹

- 1. Tsinghua University, China
- 2. Institute of High Energy Physics, China
- 3. Texas A&M University
- 4. Nanjing Normal University, China

」消華大学

$\sigma_{eff,DPS} = 2.7+1.4-1.0 \text{ (exp)}+1.5-1.0 \text{ (theo) mb}$

ATLAS ~ 6mb LHCb ~ 13mb

 $\sigma_{\text{eff,DPS}}$ [mb]

/Charmonium/Run2016B-21Feb2020-ver2_UL2016_HIPM-v1/AOD

/Charmonium/Run2016C-21Feb2020_UL2016_HIPM-v1/AOD

/Charmonium/Run2016D-21Feb2020_UL2016_HIPM-v1/AOD

/Charmonium/Run2016E-21Feb2020_UL2016_HIPM-v1/AOD

/Charmonium/Run2016F-21Feb2020_UL2016_HIPM-v1/AOD

/Charmonium/Run2016F-21Feb2020_UL2016-v1/AOD

/Charmonium/Run2016G-21Feb2020_UL2016-v1/AOD

/Charmonium/Run2016H-21Feb2020_UL2016-v1/AOD

JSON:

Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON_MuonPhys.txt

口消華大学

• $A_{\eta(\mu)} = \frac{N(|\eta(\mu)| < 2.4)}{N_{total}}$

•
$$A_{p^{T}(\mu)} = \frac{N(|\eta(\mu)| < 2.4 \& \& p^{T}(\mu) > 3.5 \text{ GeV})}{N(|\eta(\mu)| < 2.4)}$$

• $\epsilon_{RECO(\mu)} = \frac{N(GEN_{matched} \&\& |\eta(\mu)| < 2.4 \&\& p^{T}(\mu) > 3.5 \text{ GeV})}{N(|\eta(\mu)| < 2.4 \&\& p^{T}(\mu) > 3.5 \text{ GeV})}$

•
$$\epsilon_{ID(\mu)} = \frac{N(\mu_{soft} \&\&GEN_{matched} \&\&...)}{N(GEN_{matched} \&\&|\eta(\mu)| < 2.4 \&\&p^{T}(\mu) > 3.5 \text{ GeV})}$$

•
$$\epsilon_{\mu^+\mu^-} = \frac{N(cut(\mu^+\mu^-)\&\&\mu_{soft}\&\&...)}{N(\mu_{soft}\&\&GEN_{matched}\&\&...)}$$

•
$$\epsilon_{HLT} = \frac{N(HLT\&\&cut(\mu^+\mu^-)\&\&...)}{N(cut(\mu^+\mu^-)\&\&\mu_{soft}\&\&...)}$$

•
$$\epsilon_{\mu^+\mu^-\mu^+\mu^-} = \frac{N(cut(\mu^+\mu^-\mu^+\mu^-)\&\&HLT\&\&...)}{N(HLT\&\&cut(\mu^+\mu^-)\&\&...)}$$

〕清莱大学

- In $J/\psi J/\psi$ final state, candidate with one or both J/ψ decayed from a B meson is considered as a main background (non-prompt background)
- Lifetime variables are extracted from the event to exclude this background

•
$$L_{xy}PV(J/\psi_1) = \underbrace{\overline{L(J/\psi_1)}}_{p^T(J/\psi_1)} / |\overline{p^T(J/\psi_1)}|$$

•
$$c\tau(J/\psi_1) = \frac{L_{xy}PV(J/\psi_1) \cdot M(J/\psi_1)}{|p^T(J/\psi_1)|}$$

- $Sig_{Lxy}(J/\psi_1)$: Significance of $L_{xy}PV(J/\psi_1)$
- $d^{J/\psi}$: Significance of the vertex distance (D_{xy})

」清華大学

- **Double CB** for J/ψ mass peak (float)
- **2nd Cheb** for $\mu^+\mu^-$ mass (float)
- **Double Gaus (PDF1)** for prompt $J/\psi c\tau$ (in $J/\psi J/\psi$ pair)
- **Exp\otimesGaus (PDF2)** for non-prompt $J/\psi c\tau$ (in $J/\psi J/\psi$ pair)

 $J/\psi_1\mu^+\mu^-$

 $\mu^+\mu^-J/\psi_2$

 $\mu^+\mu^-\mu^+\mu^-$

- Gaus+Exp \otimes Gaus (PDF3) for $J/\psi c\tau$ (in combinatorial background)
- **Exp⊗Gaus (PDF4)** for $\mu^+\mu^- c\tau$ (in combinatorial background)
- PDF1/2 are fixed by MC
- PDF3/4 are fixed by side band

 $J/\psi_1(P)+J/\psi_2(P)$ = $J/\psi_1(P)+J/\psi_2(NP)$ = $J/\psi_1(NP)+J/\psi_2(P)$ = $J/\psi_1(NP)+J/\psi_2(NP)$ =

 $M(J/\psi_2)$

 $c\tau(J/\psi_2)$

口消華大学

С	DC
J	rj

	<i>M</i> ₂	<i>c</i> τ ₁	<i>c</i> τ ₂
<i>M</i> ₁	-0.010	-0.004	-0.010
<i>M</i> ₂	-	-0.047	-0.072
<i>c</i> τ ₁	-	-	-0.007

		<i>M</i> ₂	<i>c</i> τ ₁	<i>c</i> τ ₂
	<i>M</i> ₁	-0.011	-0.075	0.010
DPS	<i>M</i> ₂	-	-0.050	-0.032
	<i>cτ</i> ₁	-	-	0.066

口消華大学

ſ			N _{corr} (1	Mix)			N _{corr} (SPS)		N _{corr} (DPS)		
Ī	Corrected number		37259		32391		40981				
[Pass all selection	IS					8160				
			1 2			3		4 5		5	
	SPS+DPS	10)00+500	2000+500		1000+1000		2000+1000	1000+500		
J/ψ_1	P+NP	500		500		500		500	1000		
J /Ψ2	B decay		2000	20	000		2000		2000	2000	
$J/\psi\mu^+\mu^-$			1000	1000			1000		1000	1000	
$\mu^+\mu^-\mu^+\mu^-$			100	100			100		100	1	00
T / I	P+P	14	30 ± 40	2430 ± 50		1880 ± 50		2880 ± 60	1480	± 50	
J/ψ_1 I/ψ_2	NP+P	53	30 ± 30	520 ± 30		540 ± 30		540 ± 30	1020 ± 30		
J T 4	NP+NP	19	60 ± 60	1960 ± 60		0	1960 ± 60		1960 ± 60	1980 ± 70	
$J/\psi\mu^+\mu^-$		10	30 ± 40	1040 ± 30		1030 ± 40		1040 ± 30	1000 ± 40		
$\mu^+\mu^-\mu^+\mu^-$		1() 0 ± 20	100 ± 20		100 ± 20		100 ± 20	100 ± 20		

 $\Delta(y_1, y_2)$

口消華大学

 $\Delta(y_1, y_2)$

 $\Delta(\boldsymbol{\phi}_1, \boldsymbol{\phi}_2)$