

CHLCP, QINGDAO, November 2024

First determination of the spin-parity of the $\mathcal{E}_c(3055)^{+(0)}$ baryons

Guanyue Wan, Peking University in representative of the LHCb Collaboration

Outline

- Motivation & overview
- \succ Event selection
- ➢ Mass fit & signal extraction
- > Amplitude analysis
- \succ J^P determination of $E_c(3055)^{+(0)}$
- > Systematics
- > Summary

Singly heavy baryons

- Singly heavy baryon:
 - A heavy quark (*c*, *b*) and two light quarks (*u*, *d*, *s*)
 - In the relative frame:
 - Dynamics governed by the light quark pairs (*di-quark*)
- ≻ Rich spectrum:
 - Ground states: $\overline{3}_F(\Lambda, \Xi) / 6_F(\Sigma, \Xi', \Omega)$
 - Excitation: λ/ρ orbital excitation modes
- Good lab for non-perturbative QCD

Spectroscopy of $\mathcal{Z}_{c}^{(*)}$

State	JPC	Mass (MeV)	Width (MeV)		Observed modes	
Ξ_c^+	1/2+	2467.94 ^{+0.17} _{-0.20}	$1/[(4.56\pm0.05) imes1$	L0 ⁻¹³ <i>s</i>]	$ ho K^- \pi^+, \Xi^0 \pi^+ (0.55),$	
\equiv^0_c	1/2+	2470.90 ^{+0.22} 0.29	$1/[(1.53\pm0.06) imes1$	L0 ⁻¹³ <i>s</i>]	$pK^-K^-\pi^+(0.005), \Xi^-\pi^+(0.01), \Omega^-K^+(0.004)$	I Iŧ
$\Xi_c^{\prime+}$	1/2+	2578.4±0.5	keV		$\equiv_c^+ \gamma(\Sigma_c^+ \text{ analogy})$	I ff
$\equiv_c^{\prime 0}$	1/2+	2579.2 ± 0.5	keV		$\equiv_c^0 \gamma$	
$\Xi_{c}^{+}(2645)$	3/2+	2645.56 ^{+0.24} 0.30	2.14 ± 0.19		$\Xi_c^0 \pi^+$ only, Σ_c^{++} analogy)	A #1
$\Xi_{c}^{0}(2645)$	3/2+	2646.38 ^{+0.20} -0.23	2.35 ± 0.22		$\Xi_c^+\pi^-$ only	Г II
$\Xi_{c}^{+}(2790)$	1/2-	2792.4±0.5	8.9±1.0		$\Xi_c^{\prime 0}\pi^+$ (Λ_c^+ (2595) analogy)	
Ξ ⁰ _c (2790)	$1/2^{-}$	2794.1 ± 0.5	10.0 ± 1.1		$\equiv_c'^+\pi^-$	T⊛
$\Xi_{c}^{+}(2815)$	3/2-	$2816.74\substack{+0.20\\-0.23}$	2.43±0.26	2.43 \pm 0.26 $\Xi_c^{\prime 0}\pi^+, \Xi_c^0$ (2645) π^+ (Λ_c^+ (2625) analogy)		
$\Xi_{c}^{0}(2815)$	3/2-	$2820.25\substack{+0.25\\-0.31}$	2.54 ± 0.25		$\Xi_{c}^{\prime+}\pi^{-}, \Xi_{c}^{+}$ (2645) π^{-}	
Ξ_c^+(2930)	?	2942 ± 5	15±9	В	$^{0} \rightarrow \Lambda_{c}^{-}(\Lambda_{c}^{+} K^{0})$ only an evidence (by Belle)	
$\Xi_{c}^{0}(2930)$?	$2929.7^{+2.8}_{-5.0}$	26 ± 8		$B^- o \Lambda_c^-(\Lambda_c^+ K^-)$ Split into two by LHCb	
Ξ _c ⁺ (2970)	?	$2966.34\substack{+0.17\\-1.00}$	20.9 ^{+2.4}	$\Lambda_c^+\pi^+$	$(\Sigma_c(2455))K^-, \Xi_c^+\pi^+\pi^-, \Xi_c^{\prime_0}\pi^+; \Lambda_c^+K \text{ not seen}$	_
$\Xi_{c}^{0}(2970)$?	$2970.9\substack{+0.4\\-0.6}$	$28.1^{+3.4}_{-4.0}$	$\Lambda_c^+\pi^+$	$(\Sigma_c(2455))K^0, \Xi_c^0\pi^+\pi^-, \Xi_c^{\prime+}\pi^-; \Lambda_c^+K \text{ not seen}$	
Ξ _c ⁺ (3055)	?	3055.9 ± 0.4	7.8 ± 1.9		$\Sigma_{c}^{++}K^{-},D^{+}\Lambda$	
$\Xi_{c}^{0}(3055)$?	3059.0 ± 0.7	6.4 ± 2.3	6.4 \pm 2.3 $\Sigma_c^{++}K^0, D^0\Lambda$		(
$\Xi_{c}^{+}(3080)$?	3077.2 ± 0.4	3.6±1.1	3.6 ± 1.1 $\Lambda_c^+ \pi^+ K^-, \Sigma_c^{(*)++} K^-, D^+ \Lambda; \Lambda_c^+ K \text{ not seen}$		-
$\Xi_{c}^{0}(3080)$?	3077.2 ± 0.4	$5.6\!\pm\!2.2$		$\Lambda_c^+ \pi^+ K^0, \Sigma_c^{(*)++} K^0, D^0 \Lambda; \Lambda_c^+ K \text{ not seen}$	
$\Xi_{c}^{+}(3123)$?	2122.9 ± 1.3	4±4	Σ_c^+	⁺ (2520) K^- only 3.6 σ , not confirmed by Belle	- ノ

Table: Experimentally discovered Ξ_c excited states

- Undetermined excitations
 - Various theoretical explanations
- > Pinning down the state:
 - Mass, width, decay modes
 - Spin-parity
 - Decay parameter

Two 1P excitation of Ξ_c^+ in λ mode

Figure: Theoretical predictions of the Ξ_c excited states (λ mode only)

4

Decay parameter

> Under helicity basis:

$$\alpha_{\Xi_b \to \Xi_c^{**} \pi} \equiv \frac{|H_\uparrow|^2 - |H_\downarrow|^2}{|H_\uparrow|^2 + |H_\downarrow|^2}$$

- Reflect parity violation in the transition
- > If the initial (Ξ_b) & final (Ξ_c^{**}) particle have similar structure.
 - Governed by $b \rightarrow c$ weak decay
 - Pure parity violation, $\alpha_{\Xi_b \to \Xi_c^{**} \pi} \sim -100\%$

➢ If not: deviation from -100%

TABLE XIV: The predicted up-down asymmetries of $\mathcal{B}_b \to \mathcal{B}_c P$ decays. The asymmetries are given in unit of %. The asterisks in the first column indicate that the baryons in the final states are radial excited.

m		р –	D V-	-ת ת		
Type	Mode	$P = \pi$	P = K	P = D	$P = D_s$	Unit :
(i)	$lpha(\Lambda_b o \Lambda_c P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.98\substack{+2.41\\-0.00}$	$-98.47\substack{+8.91\\-1.52}$	$-98.06^{+9.41}_{-1.87}$ (%
(i)	$\alpha(\Xi_b^0\to \Xi_c^+ P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.40\substack{+9.01\\-1.59}$	$-97.96\substack{+9.52\\-1.96}$	
(i)	$\alpha(\Xi_b^-\to \Xi_c^0 P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.39\substack{+9.01\\-1.59}$	$-97.96\substack{+9.53\\-1.96}$	J
(i)*	$\alpha[\Lambda_b \to \Lambda_c(2765)P]$	$-100.00\substack{+2.14\\-0.00}$	$-99.98\substack{+2.39\\-0.00}$	$-96.61^{+10.76}_{-3.32}$	$-95.54^{+11.49}_{-4.46}$	
(ii)	$\alpha(\Omega_b \to \Omega_c P)$	$59.92\substack{+9.88\\-9.22}$	$59.93\substack{+9.88\\-9.22}$	$59.95\substack{+14.95\-13.54}$	$59.90\substack{+14.95 \\ -13.53}$	
(ii)*	$\alpha[\Omega_b \to \Omega_c(3090)P]$	$60.02\substack{+9.88\\-9.23}$	$60.02\substack{+9.88\\-9.23}$	$59.49\substack{+14.93 \\ -13.47}$	$59.23\substack{+14.92 \\ -13.43}$	
(iii)	$\alpha[\Lambda_b \to \Lambda_c(2595)P]$	$-98.86^{+4.77}_{-1.04}$	$-98.84^{+4.79}_{-1.05}$	$-97.86^{+9.63}_{-2.03}$	$-97.57^{+9.93}_{-2.25}$	
(iii)	$\alpha[\Xi_b^0 \to \Xi_c^+(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.77\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)	$\alpha[\Xi_b^- \to \Xi_c^0(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.76\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)*	$\alpha[\Lambda_b \to \Lambda_c(2940)P]$	$-98.86\substack{+4.76\\-1.03}$	$-98.84^{+4.78}_{-1.05}$	$-97.04\substack{+10.41\\-2.81}$	$-96.3\overline{6^{+10.94}_{-3.60}}$	
						Ret:1811.09265

Analysis overview

> In $\Xi_b^{0(-)} \to \Xi_c^{**+(0)} \pi^-$ decay, where $\Xi_c^{**+(0)} \to D^{+(0)} \Lambda^0$ [Ref: PhysRevD.94.032002]

- $D^{+(0)} \rightarrow K\pi\pi(K\pi)$
- $\Lambda^0 \to p\pi$
- Run2 2016-18 data sample

- ➤ Strategy:
 - 1. Event selection with pre-selection & MVA
 - 2. Signal extraction with Ξ_b mass fit
 - 3. Amplitude analysis
 - 4. Spin-parity determination
 - Validation with toy study
 - 5. Systematic uncertainties

The LHCb Detector (Run2)

Large Hadron Collider beauty experiment:

- Single-arm forward region:
 - Designed for heavy flavor study
- Dedicated vertex detector
- Tracking system: good momentum resolution
- PID system: hadron and muon identification
- Hardware & Software trigger system

Event selection

Data processing

- Trigger level requirement:
 - Hardware trigger: transverse energy deposited in calorimeter
 - Software level: high-momentum track with sufficient impact parameter, displaced secondary vertex...
- Offline reconstruction:
 - Good quality vertices displaced from PV
 - Invariant mass of $D^{+(0)}$, Λ within nominal ranges
 - ➢ Kinematic refit with mass & PV constrains
- > Offline selection:
 - Multivariate analysis selection
 - Multi-layer perceptron (MLP) trained
 - Utilizing kinematics and vertex information of Ξ_b baryons and its decay product

- Signal model: Gaussian + DSCB (parameters determined from MC)
- Partial reconstruction: shape from simulation
- Combinatorial background: exponential
- Signal then extracted with sPlot method <u>10.1016/j.nima.2005.08.106</u>

Channel	$\Xi_b^0 o \Xi_c^{**+} \pi^-$	$\Xi_b^- o \Xi_c^{**0} \pi^-$
Signal yields	637 ± 31	232 ± 19

Extracted spectrum

Distributions weighted with sPlot method <u>10.1016/j.nima.2005.08.106</u>

- $E_c(3055)^{+(0)}$ observed
- Evidence of $E_c(3080)^{+(0)}$
- Non-resonance component
- Dalitz variable distributions extracted

Helicity amplitude analysis

Helicity amplitude

► Helicity couplings in the $\Xi_b \to \Xi_c \pi$, $\Xi_c^{**} \to D\Lambda$, $\Lambda \to p\pi$ decay chain:

Amplitude model

Coherent and incoherent sum:

$$|M|^{2} = \sum_{\lambda_{\Xi_{b}},\lambda_{p}} \left| \sum_{\lambda_{\Xi_{c}},\lambda_{\Lambda}} A_{\Xi_{c}^{**}(3055)} + \sum_{\lambda_{\Xi_{c}},\lambda_{\Lambda}} A_{\Xi_{c}^{**}(3080)} + \sum_{\lambda_{\Xi_{c}},\lambda_{\Lambda}} A_{Non-resonance} \right|^{2}$$

Probability Density Function:

$$\mathcal{P}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) = \frac{1}{I(\vec{\nu})} \sum_{\lambda_{\Xi_b},\lambda_p} \left| \mathcal{M}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) \right|^2 \times \Phi(m_{D\Lambda},\vec{\Omega})\epsilon(m_{D\Lambda},\vec{\Omega}),$$

- > Fit parameters \vec{v} :
 - $H_{\lambda_{\Xi_c}=\pm 1/2}^{\Xi_c}$: helicity couplings of $\mathcal{Z}_c^{**}(3055), \mathcal{Z}_c^{**}(3080)$, non-resonances
 - $m_0, \Gamma_0 \text{ of } \mathcal{Z}_c^{**}(3055)$
 - $J^{P}_{\Xi^{**}_{c}(3055)}$: discrete parameter

Run2, $\Xi_b^0 \to \Xi_c^{**+} \pi^-$ channel

Hypotheses tests

 $> J^P_{\mathcal{Z}^{**}_c(3055)} = 3/2^+$ favored

- among all tested hypotheses: $1/2^{\pm}$, $3/2^{\pm}$, $5/2^{\pm}$, $7/2^{\pm}$
- with rejection significance $n_{\sigma} \ge 6.5\sigma$ (from toy study)

	$J^P_{\Xi_c(3055)^+}$	$lpha_{\Xi_b^0 o \Xi_c(3055)^+\pi^-}$	n_{σ}
Favored	$3/2^+$	-0.92 ± 0.10	-
	$1/2^{-}$	-0.10 ± 0.17	12.9σ
	$1/2^{+}$	$+0.31\pm0.13$	11.0σ
	$3/2^{-}$	$+0.18\pm0.14$	7.3σ
	$5/2^{-}$	-0.12 ± 0.14	6.5σ
	$5/2^{+}$	$+0.52\pm0.14$	9.8σ
	$7/2^{-}$	$+0.41\pm0.16$	10.7σ
	$7/2^{+}$	$+0.12\pm0.14$	10.9σ

Projections to $\cos \theta$ for different hypothesized fits:

Run2, $\Xi_h^0 \to \Xi_c^{**+} \pi^-$ channel

Best fit projections: $J_{\Xi_{c}^{**}(3055)}^{P} = 3/2^{+}$

Table 1: Measured $\Xi_c^{**}(3055)$ properties

μ_0 [MeV]	$\Gamma_0[MeV]$	$\alpha_{\Xi_b \to \Xi_c^{**}\pi}$
3054.52 ± 0.36	8.01 ± 0.76	-0.92 ± 0.10

PDG : $\mu_0 = 3055.9 \pm 0.4$ $\Gamma_0 = 7.8 \pm 1.9$

Rejection significance

- > Toys samples generated for alternative J^P hypotheses (J^P_{dis})
 - Parameters optimized
- Using test statistics:

$$t \equiv 2\ln\left[\mathcal{L}(J^P = 3/2^+)/\mathcal{L}(J^P_{\text{disfavor}})\right] = 2\Delta\log\mathcal{L}(3/2^+, \text{dis}),$$

> Significance rejecting J_{dis}^{P} is determined with:

$$n_{\sigma}(J_{ ext{disfavor}}) = rac{t_{ ext{data}} - \mu(t_{J_{ ext{disfavor}}})}{\sigma(t_{J_{ ext{disfavor}}})},$$

$J^P_{\Xi_c(3055)^+}$	n_{σ}
$3/2^+$	-
$1/2^{-}$	12.9σ
$1/2^+$	11.0σ
$3/2^{-}$	7.3σ
$5/2^{-}$	6.5σ
$5/2^+$	9.8σ
$7/2^{-}$	10.7σ
$7/2^+$	10.9σ

Systematics

Source	$\sigma_m [{ m MeV}/c^2]$	$\sigma_{\Gamma} \left[\mathrm{MeV} / c^2 ight]$	σ_{lpha}	$\sigma_{R_{\mathcal{B}}}$
Amplitude fit bias	—	_	_	_
Hadron masses	± 0.05	—	—	—
Momentum scale	± 0.01	—	—	—
Resolution	± 0.00	± 0.07	± 0.00	± 0.000
Simulation sample	± 0.15	± 0.30	± 0.02	± 0.002
Trigger correction	± 0.01	± 0.03	± 0.02	± 0.000
Λ categories	± 0.03	± 0.04	± 0.01	± 0.002
Ξ_b^0 mass fit model	± 0.03	± 0.13	± 0.01	± 0.001
Angular momentum	± 0.00	± 0.00	± 0.04	± 0.002
Nonresonant model	± 0.00	± 0.00	± 0.00	± 0.000
$\Xi_c(3080)^+$ width	± 0.01	± 0.01	± 0.00	± 0.003
$\Xi_c(3080)^+ { m mass}$	± 0.00	± 0.02	± 0.00	± 0.000
Clone tracks	± 0.02	± 0.03	± 0.01	± 0.003
Total	± 0.17	± 0.34	± 0.05	± 0.006

Table 3: Biases and systematic uncertainties for the $\Xi_b^0 \to \Xi_c(3055)^+\pi^-$ channel.

Summary

Theoretical interpretations of $\mathcal{E}_c(3055)$

References	Theoretical model	J^{P} of $E_{c}(3055)$
Eur. Phys. J. A 37 (2008) 217–225	Faddeev method	5/2+ (1D)
<u>Phys. Rev. D 78 (2008) 056005</u>	Regge phenomenology	5/2 ⁺ (1D)
Phys. Rev. D 84 (2011) 014025	QCD-motivated relativistic quark model	3/2 ⁺ (1D)
Phys. Rev. D 86 (2012) 034024	Chiral quark model	3/2+ (1D)
Eur. Phys. J. A 82 (2015) 51	Relativistic flux tube model	3/2 ⁺ (1D)
Phys. Rev. D 94 (2016) 114016	QCD sum rules within HQET	3/2 ⁺ (1D)
Phys. Rev. D 96 (2017) 114003	3P0 model	$1/2^+(\bar{3}_F), 3/2^+(6_F)$ (2S)
Eur. Phys. J. C 79 (2019)167	Hadron molecular state	1/2 ⁻ , 3/2 ⁻ (molecular)

Summarized in Rept.Prog.Phys. 80 (2017) no.7, 076201

Or see our paper draft

Decay parameter

→ Our measurement: $\alpha_{\Xi_b \to \Xi_c(3055)^+ \pi} = -0.92 \pm 0.10 \pm 0.05$

- Consistent with pure parity violation
- > Validating the factorization approximation
 - in $\overline{3}_F \rightarrow \overline{3}_F$ beauty to charm transitions
- \succ Hint the structure of $\Xi_c(3055)^+$ (consistent with J^P)

TABLE XIV: The predicted up-down asymmetries of $\mathcal{B}_b \to \mathcal{B}_c P$ decays. The asymmetries are given in unit of %. The asterisks in the first column indicate that the baryons in the final states are radial excited.

-						
Type	Mode	$P = \pi^-$	$P=K^-$	$P=D^-$	$P = D_s^-$	Unit :
(i)	$\alpha(\Lambda_b \to \Lambda_c P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.98\substack{+2.41\\-0.00}$	$-98.47\substack{+8.91\\-1.52}$	$-98.06^{+9.41}_{-1.87}$ (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(i)	$\alpha(\Xi_b^0\to \Xi_c^+ P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.40\substack{+9.01\\-1.59}$	$-97.96\substack{+9.52\\-1.96}$	
(i)	$\alpha(\Xi_b^-\to \Xi_c^0 P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.39\substack{+9.01\\-1.59}$	$-97.96\substack{+9.53\\-1.96}$	
(i)*	$\alpha[\Lambda_b \to \Lambda_c(2765)P]$	$-100.00\substack{+2.14\\-0.00}$	$-99.98\substack{+2.39\\-0.00}$	$-96.61^{+10.76}_{-3.32}$	$-95.54^{+11.49}_{-4.46}$	
(ii)	$\alpha(\Omega_b \to \Omega_c P)$	$59.92\substack{+9.88\\-9.22}$	$59.93\substack{+9.88\\-9.22}$	$59.95\substack{+14.95 \\ -13.54}$	$59.90\substack{+14.95 \\ -13.53}$	
(ii)*	$\alpha[\Omega_b \to \Omega_c(3090)P]$	$60.02\substack{+9.88\\-9.23}$	$60.02\substack{+9.88\\-9.23}$	$59.49\substack{+14.93 \\ -13.47}$	$59.23\substack{+14.92 \\ -13.43}$	
(iii)	$\alpha[\Lambda_b \to \Lambda_c(2595)P]$	$-98.86^{+4.77}_{-1.04}$	$-98.84^{+4.79}_{-1.05}$	$-97.86^{+9.63}_{-2.03}$	$-97.57^{+9.93}_{-2.25}$	
(iii)	$\alpha[\Xi_b^0 \to \Xi_c^+(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.77\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)	$\alpha[\Xi_b^- \to \Xi_c^0(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.76\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)*	$\alpha[\Lambda_b \to \Lambda_c(2940)P]$	$-98.86\substack{+4.76\\-1.03}$	$-98.84\substack{+4.78\\-1.05}$	$-97.04\substack{+10.41\\-2.81}$	$-96.36\substack{+10.94\\-3.60}$	
						Ref:1811.09265

$$\alpha_{\Xi_b \to \Xi_c^{**}\pi} \equiv \frac{\left|H_{\lambda_{\Xi_b}=+}^{\Xi_b}\right|^2 - \left|H_{\lambda_{\Xi_b}=-}^{\Xi_b}\right|^2}{\left|H_{\lambda_{\Xi_b}=+}^{\Xi_b}\right|^2 + \left|H_{\lambda_{\Xi_b}=-}^{\Xi_b}\right|^2}$$

$J^P_{\Xi_c(3055)^+}$	$\alpha_{\Xi_b^0 \to \Xi_c(3055)^+ \pi^-}$
$\mathbf{3/2^+}$	-0.92 ± 0.10
$1/2^{-}$	-0.10 ± 0.17
$1/2^+$	$+0.31\pm0.13$
$3/2^{-}$	$+0.18\pm0.14$
$5/2^{-}$	-0.12 ± 0.14
$5/2^+$	$+0.52\pm0.14$
$7/2^{-}$	$+0.41\pm0.16$
$7/2^{+}$	$+0.12\pm0.14$

Conclusion

- The $\Xi_b^0 \to D^+ \Lambda^0 \pi^-$ and $\Xi_b^- \to D^0 \Lambda^0 \pi^-$ decays are observed for the first time:
- $\geq \Xi_c(3055)^{+(0)}$ mass and width are measured
- $\geq \Xi_c(3055)^{+(0)}$ spin-parity measured to be $3/2^+$
 - With significance of $6.5(3.5)\sigma$
 - First determination with significance over 5σ of a charm-strange baryons

► Decay parameter in $\Xi_b^{0(-)} \to \Xi_c(3055)^{+(0)}\pi^-$ measured to be:

 $-0.92 \pm 0.10 \pm 0.05(-0.92 \pm 0.16 \pm 0.22)$

- First time in beauty to charm + pseudoscalar decays
- \succ Consistent with first *D*-wave, λ -mode excitation of $\overline{3}_F$ category

Thanks for your attention!

$\mathcal{Z}_b^- \to \mathcal{Z}_c^{**0} \pi^-$ channel results

Ξ_b mass fit

- Signal model: Gaussian + DSCB (parameters determined from MC)
- Partial reconstruction: shape from fast simulation
- Combinatorial background: exponential
- Simultaneously for LL & DD

CLHCP	2024
-------	------

	Parameters	Fit Result(DD)	Fit Result(LL)	
	$\mu_{\Xi_b^-}$	5798.2±1.0 MeV		
	$\sigma_{\Xi_b^-}$	12.5±1.0 MeV		
•.	signal yield	139±16	93±10	
ersitv —				

Run2, $\Xi_b^- \to \Xi_c^{**0} \pi^-$ channel

Best fit projections: $J_{\Xi_{c}^{**}(3055)}^{P} = 3/2^{+}$

and idates / (5 MeV/ c^2)	50 LHCt 50 $J_{\Xi_c(3)}^p$ 40	$pp \sqrt{s}=13 \text{ TeV}$ $pp \sqrt{s}=13 \text{ TeV}$ $pr \sqrt{s}=13 \text{ TeV}$	$\begin{array}{c} 70 \\ 7, 5.4 \text{ fb}^{-1} \\ 60 \\ 50 \\ 50 \\ 40 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	LHCb $pp \sqrt{s}=13 \text{ TeV}, 5.4 \text{ fb}^{-1}$		Cb $pp \sqrt{s}=13 \text{ TeV}, 5.4 \text{ fb}^{-1}$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$50 = LHCb pp \sqrt{s}=13$ $40 =$	TeV, 5.4 fb ⁻¹ $0.5 \cos \beta_{\Lambda}^{1}$
hted c					-	JP hypotheses	significance	_
Weig	3000	3050 3100	3150 m [mey]		_	3/2 +	-	
					-	1/2 —	5.5 <i>o</i>	
						1/2 +	6.5σ	
	Table 1	: Measured $E_c^{**}(305)$	5) properties			3/2 -	3.5σ	
		μ_0 [MeV]	Γ_0 [MeV]	$\alpha_{\Xi_h \to \Xi_c^{**} \pi}$		5/2 —	4.8σ	
		3061 00 + 0.80	124 + 20	$\frac{1}{0} -0.92 \pm 0.16$		5/2 +	4.8σ	
		<u> </u>	12.4 <u>1</u> 2.0			7/2 —	6.0σ	
	CLHCP	2024		Guanyue Wan, Peking U	niversity	7/2 +	6.2σ	

Systematics

Source	$\sigma_m [{ m MeV}/c^2]$	$\sigma_{\Gamma}[\text{MeV}/c^2]$	σ_{lpha}	$\sigma_{R_{\mathcal{B}}}$
Amplitude fit bias	—	-0.46	—	_
Hadron masses	± 0.05	—	—	—
Momentum scale	± 0.03	—	—	—
Resolution	± 0.00	± 0.10	± 0.00	± 0.001
Simulation sample	± 0.13	± 0.38	± 0.02	± 0.006
Trigger correction	± 0.01	± 0.03	± 0.00	± 0.001
Λ categories	± 0.04	± 0.12	± 0.05	± 0.004
Ξ_b^- mass fit model	± 0.00	± 0.19	± 0.02	± 0.003
Angular momentum	± 0.01	± 0.15	± 0.21	± 0.014
Nonresonant model	± 0.00	± 0.03	± 0.00	± 0.001
$\Xi_c(3080)^0$ width	± 0.08	± 0.69	± 0.01	± 0.032
$\Xi_c(3080)^0$ mass	± 0.03	± 0.20	± 0.01	± 0.006
Clone tracks	± 0.13	± 0.04	± 0.04	± 0.008
Total	± 0.23	± 1.11	± 0.22	± 0.038

Table 4: Biases and systematic uncertainties for the $\Xi_b^- \to \Xi_c(3055)^0 \pi^-$ channel.

Backup

Status of $\mathcal{E}_c(3055)$

- ≻ Firstly observed by BABAR in the $\Xi_c^+(3055) \rightarrow \Sigma_c^{++}K^-$ channel [Ref: PhysRevD.77.012002]
- Later confirmed by Belle in the $\Sigma_c^{++}K^-$ mode [Ref: PhysRevD.89.052003] and $D^+\Lambda$ mode [Ref: PhysRevD.94.032002]
 - $\geq \Xi_c^0(3055)$ is also found in the $D^0\Lambda$ mode [Ref: PhysRevD.94.032002]
- > Various theoretical interpretations exist

- Undetermined excitations
 - Various theoretical explanations
- Pinning down the state:
 - Mass, width, decay modes
 - Spin-parity
 - Decay parameter

Figure : Theoretical predictions of the Ξ_c excited states (λ mode only)^{ue Wan, Pek}

Ref:	10).1	0	88

Table: Experimental results of Ξ_c (until 2017)

State	Status	$I(J^P)$
Ξ_c^+	* * *	$\frac{1}{2}(\frac{1}{2}^+)$
Ξ_c^0	* * *	$\frac{1}{2}(\frac{1}{2}^+)$
$\Xi_c'^+$	* * *	$\frac{1}{2}(\frac{1}{2}^+)$
$\Xi_c^{\prime 0}$	* * *	$\frac{1}{2}(\frac{1}{2}^+)$
$\Xi_c(2645)^+$	* * *	$\frac{1}{2}(\frac{3}{2}^+)$
$\Xi_{c}(2645)^{0}$	* * *	$\frac{1}{2}(\frac{3}{2}^+)$
$\Xi_{c}(2790)^{+}$	* * *	$\frac{1}{2}(\frac{1}{2}^{-})$
$\Xi_{c}(2790)^{0}$	* * *	$\frac{1}{2}(\frac{1}{2}^{-})$
$\Xi_{c}(2815)^{+}$	* * *	$\frac{1}{2}(\frac{3}{2}^{-})$
$\Xi_{c}(2815)^{0}$	* * *	$\frac{1}{2}(\frac{3}{2}^{-})$
$\Xi_{c}(2930)^{0}$	*	$?(?^{?})$
$\Xi_{c}(2980)^{+}$	* * *	$rac{1}{2}(?^{?})$
$\Xi_{c}(2980)^{0}$	* * *	$rac{1}{2}(??)$
${\Xi_c}({3055\over 3055})^+$	* * *	$?(?^{?})$
$\Xi_c(3080)^+$	* * *	$rac{1}{2}(?^?)$
$\Xi_{c}(3080)^{0}$	* * *	$rac{1}{2}(?^{?})$
$\Xi_c(3123)^+$	*	$?(?^{?})$

Status of $\mathcal{E}_c(3055)$

State	Status	$I(J^P)$	Mass (MeV)	Width (MeV)	$\mathbf{Experiment}$	Decay modes
Λ_c^+	* * **	$0(\frac{1}{2}^+)$	2286.46 ± 0.14	$(200 \pm 6) \times 10^{-15} \text{ s}$	Fermilab [404]	weak
$\Lambda_c(2595)^+$	* * *	$0(\frac{1}{2}^{-})$	2592.25 ± 0.28	2.59 ± 0.56	CLEO [405]	$\Lambda_c \pi \pi, \Sigma_c \pi$
$\Lambda_c(2625)^+$	* * *	$0(\frac{3}{2}^{-})$	2628.11 ± 0.19	< 0.97	ARGUS [406]	$\Lambda_c \pi \pi, \Sigma_c \pi$
$\Lambda_{c}(2765)^{+}$	*	?(??)	2766.6 ± 2.4	50	CLEO [407]	$\Sigma_c \pi, \Lambda_c \pi \pi$
$\Lambda_c(2880)^+$	* * *	$0(\frac{5}{2}^+)$	2881.53 ± 0.35	5.8 ± 1.1	CLEO [407]	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$
$\Lambda_c(2940)^+$	* * *	0(??)	$2939.3^{+1.4}_{-1.5}$	17^{+8}_{-6}	BaBar [408]	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$
$\Sigma_{c}(2455)^{++}$	* * **	$1(\frac{1}{2}^+)$	2453.97 ± 0.14	$1.89\substack{+0.09\\-0.18}$	BNL [409]	$\Lambda_c \pi$
$\Sigma_{c}(2455)^{+}$	* * **	$1(\frac{1}{2}^+)$	2452.9 ± 0.4	< 4.6	TST [410]	$\Lambda_c \pi$
$\Sigma_{c}(2455)^{0}$	* * **	$1(\frac{1}{2}^{+})$	2453.75 ± 0.14	$1.83^{+0.11}_{-0.19}$	BNL [409]	$\Lambda_c \pi$
$\Sigma_{c}(2520)^{++}$	* * *	$1(\frac{\bar{3}}{2}^+)$	$2518.41^{+0.21}_{-0.19}$	$14.78_{-0.40}^{+0.30}$	SKAT [411]	$\Lambda_c \pi$
$\Sigma_{c}(2520)^{+}$	* * *	$1(\frac{\bar{3}}{2}^+)$	2517.5 ± 2.3	< 17	CLEO [412]	$\Lambda_c \pi$
$\Sigma_c(2520)^0$	* * *	$1(\frac{3}{2}^{+})$	2518.48 ± 0.20	$15.3^{+0.4}_{-0.5}$	CLEO [413]	$\Lambda_c \pi$
$\Sigma_{c}(2800)^{++}$	* * *	$1(?^{?})$	2801^{+4}_{-6}	75^{+22}_{-17}	Belle [414]	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$
$\Sigma_{c}(2800)^{+}$	* * *	$1(?^{?})$	2792^{+14}_{5}	$62 + 60 \\ - 40$	Belle [414]	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$
$\Sigma_c(2800)^0$	* * *	$1(?^{?})$	2806^{+5}_{-7}	72^{+22}_{-15}	Belle [414]	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$
Ξ_c^+	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	$2467.93\substack{+0.28\\-0.40}$	$(442 \pm 26) \times 10^{-15} \text{ s}$	CERN [415]	weak
Ξ_c^0	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	$2470.85_{-0.40}^{+0.28}$	$(112^{+13}_{-10}) \times 10^{-15} \text{ s}$	CLEO [416]	weak
$\Xi_c^{\prime+}$	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	2575.7 ± 3.0	_	CLEO [417]	$\Xi_c \gamma$
$\Xi_c^{\prime 0}$	* * *	$\frac{\tilde{1}}{2}(\frac{\tilde{1}}{2}^+)$	2577.9 ± 2.9	_	CLEO [417]	$\Xi_c \gamma$
$\Xi_c(2645)^+$	* * *	$\frac{\tilde{1}}{2}(\frac{\tilde{3}}{2}^+)$	2645.9 ± 0.5	2.6 ± 0.5	CLEO [418]	$\Xi_c \pi$
$\Xi_c(2645)^0$	* * *	$\frac{1}{2}(\frac{3}{2}^+)$	2645.9 ± 0.5	< 5.5	CLEO [419]	$\Xi_c \pi$
$\Xi_c(2790)^+$	* * *	$\frac{1}{2}(\frac{1}{2}^{-})$	2789.1 ± 3.2	< 15	CLEO [420]	$\Xi_c'\pi$
$\Xi_c(2790)^0$	* * *	$\frac{1}{2}(\frac{1}{2}^{-})$	2791.9 ± 3.3	< 12	CLEO [420]	$\Xi_c'\pi$
$\Xi_c(2815)^+$	* * *	$\frac{1}{2}(\frac{3}{2}^{-})$	2816.6 ± 0.9	< 3.5	CLEO [421]	$\Xi_c^*\pi, \Xi_c\pi\pi, \Xi_c'\pi$
$\Xi_c(2815)^0$	* * *	$\frac{1}{2}(\frac{3}{2}^{-})$	2819.6 ± 1.2	< 6.5	CLEO [421]	$\Xi_c^*\pi, \Xi_c\pi\pi, \Xi_c'\pi$
$\Xi_c(2930)^0$	*	$?(?^{?})$	2931 ± 6	36 ± 13	BaBar [422]	$\Lambda_c \overline{K}$
$\Xi_c(2980)^+$	* * *	$\frac{1}{2}(?^{?})$	2970.7 ± 2.2	17.9 ± 3.5	Belle [423]	$\Sigma_c \overline{K}, \Lambda_c \overline{K}\pi, \Xi_c \pi \pi$
$\Xi_c(2980)^0$	* * *	$\frac{1}{2}(?^{?})$	2968.0 ± 2.6	20 ± 7	Belle [423]	$\Sigma_c \overline{K}, \Lambda_c \overline{K} \pi, \Xi_c \pi \pi$
$\Xi_{c}(\frac{3055}{})^{+}$	* * *	?(??)	$\frac{3055}{3055}.1\pm1.7$	11 ± 4	BaBar [424]	$\Sigma_c \overline{K}, \Lambda_c \overline{K} \pi, D\Lambda$
$\Xi_c(3080)^+$	* * *	$\frac{1}{2}(?^{?})$	3076.94 ± 0.28	4.3 ± 1.5	Belle [423]	$\Sigma_c \overline{K}, \Lambda_c \overline{K} \pi, D\Lambda$
$\Xi_c(3080)^0$	* * *	$\frac{1}{2}(?^{?})$	3079.9 ± 1.4	5.6 ± 2.2	Belle [423]	$\Sigma_c \overline{K}, \Lambda_c \overline{K} \pi, D\Lambda$
$\Xi_c(3123)^+$	*	$\bar{?}(?^{?})$	3122.9 ± 1.3	4.4 ± 3.8	BaBar [424]	$\Sigma_c^* \overline{K}, \Lambda_c \overline{K} \pi$
Ω_c^0	* * *	$0(\frac{1}{2}^+)$	2695.2 ± 1.7	$(69 \pm 12) \times 10^{-15} \text{ s}$	WA62 [425]	weak
$\Omega_c(2770)^0$	* * *	$0(\frac{3}{2}^+)$	2765.9 ± 2.0	-	Belle [426]	$\Omega_c \gamma$

Extracted sample

Guanyue Wan, Peking University

Decay Parameter

> Decay parameter:

 $\alpha = \frac{2|S||P|cos(\delta \pm \phi)}{|S|^2 + |P|^2}$

• Relative transition possibility between up & down parity

Likelihood construction

➢ sFit likelihood:

$$\log \mathcal{L}(\vec{\nu}) = \frac{\sum_{i \in data} w_i}{\sum_{i \in data} w_i^2} \sum_{i \in data} w_i \times \log \left[\mathcal{P}(m_{D\Lambda}^i, \vec{\Omega}^i | \vec{\nu}) \right],$$

where PDF is matrix element mode square:

$$\mathcal{P}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) = \frac{1}{I(\vec{\nu})} \sum_{\lambda_{\Xi_b},\lambda_p} \left| \mathcal{M}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) \right|^2 \times \Phi(m_{D\Lambda},\vec{\Omega})\epsilon(m_{D\Lambda},\vec{\Omega}),$$

efficiency encoded with MC integral:

$$I(\vec{\nu}) \equiv \int \sum_{\lambda_{\Xi_b}, \lambda_p} \left| \mathcal{M}(m_{D\Lambda}, \vec{\Omega}|^2 \vec{\nu}) \right| \Phi \epsilon(m_{D\Lambda}, \vec{\Omega}) dm_{D\Lambda} d\vec{\Omega}$$

Toy study

- 1. Construct model $f(m_{D\Lambda}, \vec{\Omega}; \vec{\nu}', J_{dis}^P)$ for disfavored $J_{dis}^P = 1/2^{\pm}, 3/2^{-}, 5/2^{\pm}, 7/2^{\pm}$
 - Parameters \vec{v}' are optimized from hypothesized fit
- 2. Sampling component from PDF= $f(m_{D\Lambda\pi}; \vec{v}_{\Xi_b}) \times \epsilon_i(m_{D\Lambda\pi}) \times f(m_{D\Lambda}, \vec{\Omega}; \vec{v}_{\Xi_c}', J_{dis}^P) \times \epsilon_i(m_{D\Lambda}, \vec{\Omega})$
 - Variable space: $m_{D\Lambda\pi}$, $m_{D\Lambda}$, $\vec{\Omega}(\cos\theta,\cos\beta,\phi)$
 - Poisson randomized entries
 - Efficiency from MC (Legendre expansion)
- 3. sFit with disfavored model (J_{dis}^P) , and favored model $(J_{fav}^P = 3/2^+)$

Components : partial reconstruction

• $\Xi_b \to D\Sigma^0 (\to \Lambda^0 \gamma) \pi^-$ samples generated with RapidSim , invariant mass of

 $D\Lambda^0\pi^-$ (Ξ_b with a γ lost) calculated

• Influence of preselection neglectable

Resolution

• Resolution of Ξ_c^{**} evaluated with MC samples :

Fit $(M_{True} - M_{Reconstruction})$ in each m(DA) bin with :

 $f \times Gaussian_1 + (1 - f)Gaussian_2$

- Choose constant resolution
- Convolute to PDF

Trigger Efficiency

- MC errors in L0 trigger efficiency for :
 - ➤ TIS : L0_Photon | Electron | Muon | DiMuon_TIS
 - Calibrated using TISTOS method
 - ➤ TOS : L0_Hadron_TOS
 - Calibrated using E_T dependent data driven L0 efficiency for each trach

TIS Efficiency Calibration

• TIS efficiency as a function of Ξ_b transverse momentum:

 $\epsilon_{TIS} = \frac{N_{TIS\&TOS}(p_T)}{N_{TOS}(p_T)}$

- Evaluated for data and MC in each p_T bins
- MC corrected according to differences

 \succ Data efficiency is evaluated with $\Xi_b \rightarrow \Xi_c \pi^-$ decay, with larger statistics

TOS Efficiency Calibration

- L0 TOS efficiency is tabulated with respect to E_T of final tracks
- Fitting variables distribution in two MC samples are compared:
 - > Cut with L0_Hadron_TOS decision
 - > Weighted with L0 efficiency table
- The first sample is calibrated to the second sample
 - > With GBReweighter method
 - \succ Concerning fitting variables $m(D\Lambda)$, $\cos \theta$, $\cos \beta$ and α
- Events triggered with TIS/TOS are separately weighted

Selection Bias

- Effects of Pre-selection & MVA :
 - ➤ Evaluated with MC

> Distribution of $\Delta M = M_{\text{reconstruction},\Xi_c} - M_{\text{true},\Xi_c}$ is fitted

- $\succ \mu$ evaluated for samples before and after selection
- $\succ \Delta \mu$ taken as bias, all within $\pm 0.001 MeV$

PDG Bias & Uncertainty

- *DecayTreeFitter* constrained D, Λ masses to known values in LHCb database
- ➢ Differences with PDG :

$$\Delta \mu = \sum_{D,\Lambda,\pi} (m_{PDG} - m_{LHCb})$$

> Uncertainties :

$$\sigma_{\mu_0} = \sqrt{\sum_{D,\Lambda,\pi} |\sigma_{PDG}|^2}$$

Particle	PDG [MeV]	LHCb [MeV]	Particle	PDG [MeV]	LHCb [MeV]
Λ	1115.683 ± 0.006	1115.683	D^+	1869.66 ± 0.05	1869.62
D^0	1864.84 ± 0.05	1864.86	π^{-}	139.57039 ± 0.00018	139.57018

Momentum Scale

- Track momenta have been calibrated (MS)
 - With precision 0.03%
- Evaluated by varying calibration by $\pm 0.03\%$
 - Event-by-event mass difference is fitted (with triple Gaussian)
 - Maximum taken as uncertainties

Resolution Uncertainty

- Vary within $\mu_0 \pm \Gamma$
- Maximum differences taken as uncertainties

MC Fluctuation

- MC integral over phase-space to implement signal efficiency
- Limited statistics in MC will introduce uncertainty to fit results
- Using bootstrap toy MC method

LL/DD Differences

- In default fit, LL&DD samples are merged
- LL and DD samples are fitted simultaneously

Contribution of $\Xi_c(3080)$

 $\begin{array}{l} \rho \text{ modes: } l \neq 0 \\ \lambda \text{ modes: } L \neq 0 \end{array}$

- The $\Xi_c(3080)^{+/0}$ components are introduced to the amplitude model.
- $\Xi_c(3080)^{+/0}$ assumed to have $J = l_{\lambda} + s_c$, with $J = l_{\lambda} s_c$ for $\Xi_c(3055)^{+/0}$
- With $l_{\lambda} = 2$, the J^P is fixed to $5/2^+$
- The uncertainties of $\Xi_c(3080)^{+/0}$ mass & width input are evaluated

Uncertainties of sWeights

- Uncertainty in Ξ_b mass fit can be introduced to amplitude fit
- Three variations of the $m(\Xi_b)$ fit models are checked:
 - \succ Extra component of $\Xi_b^- \to D^{*0} (\to D^0 \gamma) \Lambda^0 \pi^-$ partial reconstruction
 - ➤ Signal model :

 $Gauss + DSCB \rightarrow Gauss_1 + Gauss_2$

➢ Background model :

Exponential \rightarrow 2nd order Chebychev polynomial

Charm WG Meeting

LS couplings

- Possible orbital angular momentums in $\Xi_b \rightarrow \Xi_c \pi$ weak decay.
- Only lower state considered in default model
- Alternative l s couplings are considered, with l expanded:

$$\begin{split} H^{A \to B+C}_{\lambda_B, \lambda_C} q^{l_{\min}} B_{l_{\min}}(q, q_0, d) \to \sum_{ls} g_{ls} \sqrt{\frac{2l+1}{2J_A+1}} \left\langle l0; s\delta | J_A \delta \right\rangle \left\langle J_B \lambda_B; J_C - \lambda_C | s\delta \right\rangle q^l B_l(q, q_0, d) \\ \\ = \sum_{l=\frac{1}{2}+J_{\Xi_c}, J_{\Xi_c} - \frac{1}{2}} g_{l,s=J_{\Xi_c}} \sqrt{\frac{2l+1}{2}} \left\langle l0; J_{\Xi_c} \lambda_{\Xi_c} | \frac{1}{2} \lambda_{\Xi_c} \right\rangle q^l B_l(q, q_0, d) \end{split}$$