# SUSY Electroweak Production in 2-Tau Final State & RPV Reinterpretation

<u>Shiyi Liang</u>, Jiarong Yuan CLHCP 2024 16<sup>th</sup> November 2024





Institute of High Energy Physics Chinese Academy of Sciences

#### **SUSY**

- Standard Model (SM) of particle physics
  - Precisely described the fundamental particles and the interactions between them
- Some problems are still unsolved: dark matter, hierarchy problem, the GUT, muon g-2, etc.
- Supersymmetry (SUSY) is one of the most appealing BSM theories.



### Introduction

- SUSY searches on di-tau or di-tau+1-lepton final states
- Direct stau production with  $2\tau + E_T^{miss}$ 
  - Light sleptons could play a role in the co-annihilation of neutralinos in the early universe.
  - Models with light stau decaying to light neutralinos are consistent with dark matter searches.
  - Independent studies of all three lepton flavours are necessary.
- Gaugino production  $(\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0)$  via stau with  $\geq 2\tau + E_T^{miss}$ 
  - Gaugino production has higher cross-section.
- Gaugino production  $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0)$  via Wh with  $2\tau + 1\ell + E_T^{miss}$ 
  - One lepton requirements could suppress the SM backgrounds



#### **Direct stau production**

- Signal models
  - Direct production of stau pair, then decay to taus and LSP
  - Signature:  $2\tau + E_T^{miss}$
- Analysis Strategy
  - Four BDTs are trained using the LightGBM on four groups of signal scenarios chosen for  $m(\tilde{\tau})$ ,  $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$ 
    - BDT inputs:  $E_T^{miss}$ ,  $p_T(\tau_1)$ ,  $m_T(\tau_1)$ ,  $p_T(\tau_2)$ ,  $m_T(\tau_2)$ ,  $\Delta\phi(\tau_1, \vec{p}_T^{miss})$ ,  $\Delta\phi(\tau_2, \vec{p}_T^{miss})$ ,  $\Delta\eta(\tau_1, \tau_2)$ ,  $m(\tau_1, \tau_2)$ ,  $m_{eff}$ ,  $m_{Tsum}$
  - Multi-jet background is estimated by ABCD method.
  - Dominant backgrounds (Z+jets, W+jets, top) are normalized in dedicated control regions.
  - Other minor backgrounds are estimated by MC and validated in validation regions.



#### **Direct stau production**

- No significant excess over the SM background is observed
- For the combined  $\tilde{\tau}_L$  and  $\tilde{\tau}_R$  production, the stau masses up to 500 GeV are excluded for a massless LSP
- For the  $\tilde{\tau}_L$  production, the stau masses up to 425 GeV are excluded
- Sensitivity to  $\tilde{\tau}_R$  is obtained for the first time.



## Gaugino production ( $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ ) via stau

- Signal models
  - Gaugino pair production
  - Signature:  $\geq 2\tau + E_T^{miss}$
- Analysis Strategy
  - Six signal regions aiming for OS/SS channels and different  $\Delta(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0, \tilde{\chi}_1^0)$
  - Multi-jet background is estimated by ABCD method.

SB- C1C1-LM C1N2OS-LM C1N2SS-LM C1C1-HM C1N2OS-HM C1N2SS-HM

- W+jets, Top(SS) backgrounds are normalized in dedicated control regions.
- Other backgrounds are estimated by MC and validated in validation regions.

|                          | $ u_{	au}/	au$                                                              | $ u_{	au}/	au$                                                           |
|--------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| p                        | $\tau/\nu_{\tau}$ p                                                         | $\tau/\nu_{\tau}$                                                        |
| Í                        | $\tilde{\chi}_1^{\pm}$ $\tilde{\tau}/\tilde{\nu}_{\tau}$ $\tilde{\chi}_1^0$ | $\tilde{\chi}_1^{\pm}$ $\tilde{\tau}/\tilde{\nu}_{-}$ $\tilde{\chi}_1^0$ |
| P                        | $\tilde{\tau}/\tilde{\nu}_{\tau}$                                           | $\tilde{\tau}/\tilde{\nu}_{\tau}$                                        |
| $p^{\prime\prime\prime}$ | $\tilde{\chi}_1^{\mp}$                                                      | $\tilde{\chi}_2^0$                                                       |
|                          | $\sim \tau/\nu_{\tau}$                                                      | $\sim \tau/\nu_{\tau}$                                                   |
|                          | $\nu_{	au}/	au$                                                             | $\tau/ u_{	au}$                                                          |

|                                     |                   | 0        |          |       |                               |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|-------------------|----------|----------|-------|-------------------------------|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trigger                             | asymm. di- $\tau$ |          |          |       | $di-	au + E_{ m T}^{ m miss}$ |               | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $E_{\rm T}^{\rm miss}$ [GeV]        | < 150             |          |          | > 150 |                               |               | leV    | $100  30  30  47LAS \qquad \bullet Data \qquad \cancel{5} SM Total \qquad \cancel{5} $ |
| $N \text{ medium } \tau$            | = 2               | $\geq 2$ | $\geq 2$ | = 2   | $\geq 2$                      | $\geq 2$      | 2<br>2 | 80 - ts = 13 TeV, 139 fb <sup>-1</sup> Multi-jet Multi-boson - ts = 13 TeV, 139 fb <sup>-1</sup> Multi-jet Multi-boson - ts = 13 TeV, 139 fb <sup>-1</sup> Multi-jet Multi-boson - ts = 13 TeV, 139 fb <sup>-1</sup> Multi-jet Higgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $N 	ext{ tight } 	au$               | $\geq 1$          | $\geq 1$ |          | _     |                               |               | ts /   | MJVH-C1N2OS-HM post-Ht W+jets Z+jets<br>W+jets Z+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets<br>W+jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Charge combination                  | OS                | OS       | SS       | OS    | OS                            | $\mathbf{SS}$ | ven    | $60 - m_{\chi}^{2} \chi_{2}^{2} \chi_{1}^{2} = (100, 00) \text{ GeV } (x500) - m_{\chi}^{2} \chi_{1}^{2} = (1100, 0) \text{ GeV } (x500) - 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N b-jets                            | = 0               | = 0      | =0       | =0    | = 0                           | =0            | Ш      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N jets                              |                   | < 3      | < 3      | _     |                               |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \Delta \phi(	au_1,	au_2) $        | > 1.6             | —        | > 1.5    | _     |                               |               |        | 20 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $m(	au_1,	au_2)  [	ext{GeV}]$       | > 120             | > 120    |          | > 120 | > 120                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $E_{\rm T}^{ m miss}$ [GeV]         | >60               | > 60     |          | _     |                               |               | N      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $m_{ m Tsum}  [{ m GeV}]$           |                   |          | > 200    | >400  | > 400                         | > 450         | a/S    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $m_{\mathrm{T2}} \; \mathrm{[GeV]}$ | > 80              | >70      | > 80     | > 85  | > 85                          | > 80          | Dati   | 00 65 /0 /5 80 85 100 110 120 130 140 150 160 1/0 180 190 20<br>m <sub>T2</sub> [GeV] m <sub>T sum</sub> [GeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Gaugino production ( $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ ) via stau

- No significant excess over the SM background is observed
- For χ<sub>1</sub><sup>±</sup> χ<sub>1</sub><sup>∓</sup>, chargino masses up to 970 GeV are excluded for a massless LSP
- For χ<sub>1</sub><sup>±</sup> χ<sub>1</sub><sup>∓</sup> and χ<sub>1</sub><sup>±</sup> χ<sub>2</sub><sup>0</sup>, chargino masses up to 1160 GeV are excluded for a massless LSP





## Gaugino production ( $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ ) via Wh

- Signal models
  - Gaugino pair production
  - Signature: $2\tau + 1\ell + E_T^{miss}$
- Analysis Strategy
  - Two signal regions aiming for different  $\Delta(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0, \tilde{\chi}_1^0)$
  - Fake backgrounds are estimated using data-driven method
  - Other backgrounds are estimated by MC and validated in validation regions.
- No significant excess over the SM background is observed
- Chargino masses up to 330 GeV are excluded for a massless LSP







### **RPV Reinterpretation**

- Reinterpretation in RPV models with variable RPV coupling strength
- The most general superpotential introduces terms allowing for baryon- and lepton-number violation.
  - The LNV RPV  $\lambda_{133}$ ,  $\lambda_{233}$  are assumed non-zero, which makes the LSP unstable and decay to SM particles.
  - LSP lifetime depends on the RPV coupling strength and slepton mass.
- The di- τ [JHEP 05, 150 (2024)] and four-lepton[JHEP 2021, 167 (2021)] analyses have been reinterpreted.

$$W_{\text{RPV}} = \underbrace{\lambda_{ijk}}{2} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{\lambda''_{ijk}}{2} \bar{U}_i \bar{D}_j \bar{D}_k + k_i L_i H_u$$
Higgsino-Model
  
Stau-Model
$$\int_{p} \frac{\tau}{\tau} \int_{\chi_1^0 \lambda_{i33}}^{\tau} \frac{\nu}{\nu} \int_{p} \frac{\ell/\tau}{\tau} \int_{\lambda_{i33}}^{\tau} \frac{\nu}{\nu} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\tau} \frac{\ell/\tau}{\tau} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\tau} \frac{\ell/\tau}{\tau} \int_{\nu} \frac{\ell/\tau}{\tau} \int_{\tau} \frac{\ell/\tau}{\tau} \int$$

#### **Displaced Tau Systematics**

- The di- $\tau$  analysis includes two additional uncertainties to account for deviations from the conventional systematics resulting from displaced  $\tau_{had}$ .
  - Tau reconstruction and identification uncertainty for displaced  $\tau_{had}$ 
    - The uncertainty ranges from 1% to 6%(1% to 20%) for 1(3)-prong  $\tau$  in bins of  $\tau d_0$  and  $L_{xy}$ .
  - Di- $\tau$  trigger uncertainty for displaced  $\tau_{had}$ 
    - The trigger efficiency uncertainty is within 6% (12%) for asymmetric di- $\tau$  (di- $\tau$ + $E_T^{miss}$ ) trigger.



#### **Model-dependent Limits**

95% CL exclusion limits are set for stau and higgsino scenarios.

#### **Stau-Model**

#### Higgsino-Model

#### $\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{2}^{0}$ Production



 $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$ **Production** 

 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$  Production

### Summary

- An overview of the SUSY searches on di-tau or di-tau+1-lepton final states and the RPV reinterpretation with final states containing taus
- The current results have improved a lot compared to previous results
- Run3 analysis focusing on scenarios in the compressed region