

Recent ATLAS results of Dark Matter combination and Dark Higgs search

Qibin LIU on behalf on the ATLAS Collaboration

UNIVERSITY of WASHINGTON

The 10th China LHC Physics Conference (CLHCP2024)

The Dark Matter

MACS J0152.5-2852

- Existence of dark matter (DM) supported by many pieces of evidence
 - Galaxy rotation, gravity lensing, bullet cluster, cosmic microwave background, contradictions in MOND, so on
- DM makes up most of our universe its nature remains largely unknown
- In quest to search for any possible interaction of DM beyond gravity
 - Major effort in nowadays study for new physics

LHCb

CMS

LHC

SPS ATLAS

ALICE

Pb

Dark Matter Searches at ATLAS

ATLAS Detector

General-purpose detector Designed for p-p collision at LHC Inner Detector, calorimeters and Muon spectrometer

Detection of Dark Matter

 DM invisible from detector: E_T^{miss}
 → Detect from recoil of visible particles
 → Detect from resonance or unusual signature If nothing detected: exclusion limit is set

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator using 139 fb⁻¹ of $\sqrt{s} = 13$ TeV pp collision data

Science Bulletin 69 (2024) 3005

2HDM+a Model

2HDM+a: Two-Higgs-Doublet-Model with an additional pseudo-scalar mediator a (coupled to fermionic DM χ)

Widely studied as LHC Dark Matter Benchmark Model

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss}$ + $Z(\ell\ell)$	Х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	х	х	х	Х	X	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	х			х	х	х	Х		
$E_{\rm T}^{\rm miss}$ + $h(\tau\tau)$	Х			х						
$E_{\rm T}^{\rm miss} + tW$	Х	х	х	х	Х	х	Х	Х		
$E_{\rm T}^{\rm miss}$ + j	Х	х			х	х	х	Х		
$h \rightarrow \text{invisible}$	Х	х			Х					x
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						х	Х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	Х		
tīttī	Х	х	х	Х	Х	х	Х	Х	Х	
$tbH^{\pm}(tb)$	Х	х	Х	Х	Х	х	Х	Х	Х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

Sc	enario		Fixed	d parameter v	alues		Varied parameters
		$\sin \theta$	<i>m</i> _A [GeV]	<i>m</i> _{<i>a</i>} [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	a	0.35	_	—	10	1.0	
1	b	0.70	_	—	10	1.0	(m_a, m_A)
2	a	0.35	_	250	10	_	(m + top P)
2	b	0.70	—	250	10	_	$(m_A, \tan \beta)$
2	a	0.35	600	—	10	_	$(m top \ P)$
5	b	0.70	600	_	10	_	$(m_a, \tan \beta)$
4	a	_	600	200	10	1.0	sin A
4	b	_	1000	350	10	1.0	8111 0
5		0.35	1000	400	—	1.0	m_{χ}
6		0.35	1200	_	_	1.0	(m_a, m_χ)

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

 $h \rightarrow aa \rightarrow 4f/h \rightarrow \text{invisible}$

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss} + Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	Х	х	х	Х	х	Х	Х	Х	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	Х			Х	Х	Х	Х		
$E_{\rm T}^{\rm miss} + h(\tau\tau)$	Х			х						
$E_{\rm T}^{\rm miss} + tW$	Х	Х	Х	Х	Х	Х	Х	Х		
$E_{\rm T}^{\rm miss}$ + j	Х	Х			Х	Х	Х	Х		
$h \rightarrow \text{invisible}$	Х	Х			Х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						Х	Х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	Х		
tītī	Х	Х	Х	х	Х	х	Х	Х	Х	
$tbH^{\pm}(tb)$	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$h \rightarrow aa \rightarrow f\bar{f}f'\bar{f}'$										x

Sc	enario		Fixed	d parameter v	alues		Varied parameters
		$\sin \theta$	<i>m</i> _A [GeV]	<i>m_a</i> [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	а	0.35	Dich pho	nomonolo	10	1.0	(m, m,)
1	b	0.70	кісп рпе	nomenoid	<u>10 10 10 10 10 10 10 10 10 10 10 10 10 1</u>	1.0	(m_a, m_A)
2	а	0.35	_	250	10	_	$(m \cdot ton B)$
2	b	0.70	—	250	10	_	$(m_A, \tan p)$
3	а	0.35	600	—	10	_	$(m \tan \beta)$
5	b	0.70	600	_	10	_	$(m_a, \tan p)$
1	а	_	600	200	10	1.0	sin A
-	b	_	1000	350	10	1.0	SIII U
5		0.35	1000	400	_	1.0	m_{χ}
6		0.35	1200	_	—	1.0	(m_a, m_χ)

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss} + Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	х	х	х	Х	Х	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	х			х	х	х	Х		
$E_{\rm T}^{\rm miss} + h(\tau\tau)$	х			х						
$E_{\rm T}^{\rm miss} + tW$	Х	Х	Х	Х	Х	Х	Х	Х		
$E_{\rm T}^{\rm miss}$ + j	Х	Х			х	х	х	Х		
$h \rightarrow \text{invisible}$	Х	Х			х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						х	Х		
$E_{\rm T}^{\rm miss} + b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	Х		
tītī	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$tbH^{\pm}(tb)$	х	х	х	х	х	х	х	Х	Х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

S	cenario		Fixe	d parameter v	alues		Varied parameters
		$\sin \theta$	m_A [GeV]	<i>m</i> _{<i>a</i>} [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	а	0.35	—	—	10	1.0	
1	b	0.70	—	_	10	1.0	(m_a, m_A)
2	а	0.35	—	250	10	—	$(m + \tan \beta)$
2	b	0.70		noral 2115		—	$(m_A, \tan p)$
3	а	0.35	600 Ge		JVI SCan	_	$(m \tan \beta)$
5	b	0.70	600	_	10	_	$(m_a, \tan p)$
1	а	_	600	200	10	1.0	sin A
4	b	_	1000	350	10	1.0	SIII U
5		0.35	1000	400	—	1.0	m_{χ}
6		0.35	1200	_	_	1.0	(m_a, m_χ)

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss} + Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	х	х	х	х	Х	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	х			х	х	х	х		
$E_{\rm T}^{\rm miss} + h(\tau\tau)$	Х			Х						
$E_{\rm T}^{\rm miss} + tW$	Х	х	х	х	х	х	Х	Х		
$E_{\rm T}^{\rm miss}$ + j	Х	х			х	х	х	Х		
$h \rightarrow \text{invisible}$	Х	х			х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						х	Х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							х	Х		
$t\bar{t}t\bar{t}$	Х	х	х	Х	х	х	Х	Х	Х	
$tbH^{\pm}(tb)$	Х	х	х	х	х	х	х	Х	Х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

Sc	enario		Fixed	Varied parameters			
		$\sin \theta$	<i>m</i> _{<i>A</i>} [GeV]	<i>m_a</i> [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	а	0.35	—	—	10	1.0	(m m)
1	b	0.70	—	—	10	1.0	(m_a, m_A)
2	а	0.35	—	250	10	_	$(m + \tan \beta)$
2	b	0.70	—	250	10	_	$(m_A, \tan p)$
2	а	0.35	600	—	10	_	$(m \tan \beta)$
5	b	0.70	600	_	10	_	$(m_a, \tan p)$
4	а	_	Visible v	c Invisible	a modiato	r doca	sin A
4	b	_	VISIDIE V.	5. 111151010		i ueta	y SHI U
5		0.35	1000	400	_	1.0	m_{χ}
6		0.35	1200	—	—	1.0	(m_a, m_χ)

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss} + Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	х	х	х	х	х	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	х			х	х	х	х		
$E_{\rm T}^{\rm miss} + h(\tau\tau)$	х			х						
$E_{\rm T}^{\rm miss} + tW$	Х	х	х	х	х	х	Х	х		
$E_{\rm T}^{\rm miss}$ + j	Х	х			Х	х	Х	х		
$h \rightarrow \text{invisible}$	Х	х			Х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						Х	х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	х		
tītī	Х	х	х	х	х	х	Х	х	х	
$tbH^{\pm}(tb)$	Х	х	х	х	х	х	Х	х	х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

	Sc	enario		Fixed	d parameter v	alues		Varied parameters
			$\sin \theta$	<i>m</i> _A [GeV]	<i>m_a</i> [GeV]	m_{χ} [GeV]	$\tan \beta$	
	1	а	0.35	_	—	10	1.0	
	1	b	0.70	_	—	10	1.0	(m_a, m_A)
	\mathbf{c}	a	0.35	_	250	10	_	(m, top R)
	Z	b	0.70	_	250	10	_	$(m_A, \tan \beta)$
	2	а	0.35	600	_	10	_	$(m \tan \theta)$
	3	b	0.70	600	_	10	_	$(m_a, \tan \beta)$
	4	а	_	600	200	10	1.0	sin 0
	4	b	_	1000	350	10	1 0	8111 0
	5		Comp	pare to cosi	nological a	nd non-col	lider li	mit m_{χ}
	6		0.35	1200	_	_	1.0	(m_a, m_{χ})
_								

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

Multiple ATLAS analyses interpreted in different scenarios for benchmark And combination of most sensitive channels to set the best exclusion limit

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss}$ + $Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	х	х	х	х	Х	x
$E_{\rm T}^{\rm miss}$ + $h(\gamma\gamma)$	х	х			х	х	х	х		
$E_{\rm T}^{\rm miss}$ + $h(\tau\tau)$	х			Х						
$E_{\rm T}^{\rm miss} + tW$	х	Х	х	х	х	х	х	х		
$E_{\rm T}^{\rm miss}$ + j	Х	Х			Х	х	Х	х		
$h \rightarrow \text{invisible}$	Х	Х			Х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						Х	х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	Х		
tītī	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$tbH^{\pm}(tb)$	Х	Х	Х	х	х	х	Х	х	Х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

Sco	enario		Fixed	d parameter v	alues		Varied parameters
		$\sin \theta$	<i>m</i> _A [GeV]	<i>m_a</i> [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	a	0.35	—	—	10	1.0	(112 112)
1	b	0.70	—	_	10	1.0	(m_a, m_A)
\mathbf{r}	a	0.35	—	250	10	_	(m + top P)
Ζ	b	0.70	_	250	10	_	$(m_A, \tan p)$
2	a	0.35	600	_	10	_	$(m top \ R)$
3	b	0.70	600	_	10	_	$(m_a, \tan \beta)$
1	a	_	600	200	10	1.0	sin A
4	b	_	1000	350	10	1.0	SIII Ø
5		0.35	1000	400	_	1.0	m_{y}
6			Invisible a	and exotic S	SM Higgs de	ecay	(m_a, m_χ)

Signatures and Combination Strategy

Diverse signatures and rich phenomenology: MET+X and 4 fermions (including 4top)

More in backups

 $h \rightarrow aa \rightarrow 4f/h \rightarrow \text{invisible}$

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss}$ + $Z(\ell\ell)$	х	х	х	х	х	х	х	х	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$	х	х	х	х	Х	х	х	Х	Х	x
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$	х	х			Х	х	х	Х		
$E_{\rm T}^{\rm miss} + h(\tau\tau)$	х			Х						
$E_{\rm T}^{\rm miss} + tW$	Х	х	х	х	Х	х	Х	Х		
$E_{\rm T}^{\rm miss}$ + j	х	х			Х	х	х	Х		
$h \rightarrow \text{invisible}$	Х	х			Х					х
$E_{\rm T}^{\rm miss}$ + $Z(q\bar{q})$	Х						Х	Х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$							Х	Х		
tītī	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$tbH^{\pm}(tb)$	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$h \to aa \to f\bar{f}f'\bar{f}'$										x

	Sce	nario		Fixed	d parameter v	alues		Varied paramete	rs
			$\sin \theta$	<i>m</i> _A [GeV]	<i>m_a</i> [GeV]	m_{χ} [GeV]	$\tan \beta$		
	1	a	0.35	_	_	10	1.0		$\overline{\langle}$
	1	b	0.70	_	_	10	1.0	(m_a, m_A)	
	2	a	0.35	_	250	10	_	(m + top R)	
	L	b	0.70	_	250	10	_	$(m_A, \tan \beta)$	
	2	a	0.35	600	—	10	_	$(m \tan \beta)$	
	3	b	0.70	600	—	10	_	$(m_a, \tan \beta)$	
4	4	a	_	600	200	10	1.0	ain 0	
	4	b	_	1000	350	10	1.0	SIII Ø	
	5		0.35	1000	400	_	1.0	m_{χ}	
	6		0.35	1200	—	_	1.0	(m_a, m_χ)	

12

Scan in $m_a - m_A$ Parameter Space

- Invisible Higgs decay shows sensitivity for light *a*
- Mono-h (MET+h) searches show similar exclusion shape in m_a - m_A plane, with h(bb) most sensitive due to large branching ratio and special a → ah diagram
- $h(\gamma\gamma)$ outperforms in low MET region (low m_A) using photon trigger

Scan in $m_a - m_A$ Parameter Space

- \bullet $E_{T}^{\text{miss}} + h(b\overline{b}), 139 \text{ fb}^{-1}$ JHEP 11 (2021) 209 - $E_{T}^{\text{miss}} + h(\tau \tau)$, 139 fb⁻¹ arXiv:2305.12938 $E_{T}^{\text{miss}}+h(\gamma\gamma)$, 139 fb⁻¹ JHEP 10 (2021) 13 $E_{T}^{\text{miss}} + Z(II)$, 139 fb⁻¹ PLB 829 (2022) 137066 $E_{T}^{\text{miss}} + Z(q\bar{q}), 36.1 \text{ fb}^{-1}$ JHEP 10 (2018) 180 $E_{\rm T}^{\rm miss} + tW$, 139 fb⁻¹ arXiv:2211.13138 $E_{\rm T}^{\rm miss}$ +*j*, 139 fb⁻¹ PRD 103 (2021) 112006 - h \rightarrow invisible, 139 fb⁻¹ arxiv:2301.10731 **MET+tW**
- Mono-Z (MET+Z) searches especially lepton final states extend the limit on low MET region (low m_A) due to the lepton trigger and smaller mass of Z
 - MET+tW search shows weaker observed limit due to excees in 2lepton channel
 - Mono-j (MET+j) search shows different exclusion shape due to lack of resonant diagram

14

Scan in $m_a - m_A$ Parameter Space

 \bullet

Charged Higgs search (tbH^{\pm}) $E_{\tau}^{\text{miss}} + h(b\overline{b})$, 139 fb⁻¹ extends the limit on low m_A and - $E_{\tau}^{\text{miss}} + h(\tau \tau)$, 139 fb⁻¹ little dependence on m_a since not directly probe *a* production $E_{T}^{\text{miss}}+h(\gamma\gamma)$, 139 fb⁻¹ 4top analysis excludes 2HDM+a $E_{T}^{\text{miss}} + Z(II)$, 139 fb⁻¹ model only above ttbar PLB 829 (2022) 137066 threshold $(m_A > 2m_t)$ $E_{\tau}^{\text{miss}} + Z(q\bar{q}), 36.1 \text{ fb}^{-1}$ $E_{T}^{\text{miss}}+tW$, 139 fb⁻¹ $E_{\rm T}^{\rm miss}$ +*j*, 139 fb⁻¹ PRD 103 (2021) 112006 $tbH^{\pm}(tb)$, 139 fb⁻¹ tbH[±] 4top لالالالالا -- h \rightarrow invisible, 139 fb⁻¹ 00000

 $A/H/a \checkmark \overline{b}/\overline{t}/\overline{\chi}$

2020

Combined Limit in $m_a - m_A$ Plane

- 3 most sensitive channels got statistical combination: profiled likelihood fitting combines all the parameters, regions and statistics
- Decorrelate NP for pulled/overconstrained uncertainty across different channel to avoid bias
- Latest collider constraint on 2HDM+a model (more backups)

Scan in $m_a - m_\chi$ Parameter Space

Series of h \rightarrow aa \rightarrow 4f searches included first time: good sensitivity for low mass pseudo-scalar *a*

Broad variety of searches in ATLAS combined and rule out large area of parameter space

Search for dark matter produced in association with a dark Higgs boson in the bb final state using collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ATLAS-CONF-2024-004

<u>2407.10549</u>

Higgs Mechanism in Dark Sector

- Explain the mass of DM with Higgs mechanism in dark sector: spontaneously broken U(1)' gauge symmetry
- Majorana DM χ interacts with SM via spin-1 mediator Z' and a singlet s under U(1)'
- Mixing of dark Higgs s and SM Higgs h: detectable decay as $s \to b\bar{b}$, $s \to VV$ depending on mass
- New annihilation channel to SM open up ($\chi \chi \to ss \to SM$): prevent DM Relic Density (Ωh^2) over-production
- 4 parameters of interest and 2 scan scenarios with Ωh^2 fix at 0.12 (assuming all DM from this mechanism) [2]
 - First time directly require Ωh^2 condition in collider DM search

Overview of Mono-S(bb) Analysis

- Search for dark Higgs boson with $b\overline{b} + E_T^{miss}$ signature
- Probe E_T^{miss} down to 200 GeV and m_{bb} down to 30 GeV
- Resolved/boosted topology reconstructed depending on MET

Overview of Mono-S(bb) Analysis

- Search for dark Higgs boson with $b\overline{b} + E_T^{miss}$ signature
- Probe E_T^{miss} down to 200 GeV and m_{bb} down to 30 GeV
- Resolved/boosted topology reconstructed depending on MET
- Background from W+jets, ttbar (τ not vetoed) and Z+jets ($Z\nu\nu + b\overline{b}$)
 - Estimated from MC and normalization fitted to data in 1-muon and 2-lepton control region
- Dominant uncertainties from Z+jets fitting, Z+jets modelling, jet flavor tagging and data statistics

Source of uncertainty	Fraction	of total unc	certainty [%]
Source of uncertainty	(a)	(b)	(c)
Signal modeling	0	1	0
Z+jets normalization	41	11	11
W+jets normalization	8	13	13
$t\bar{t}$ normalization	1	7	8
Z+jets theory	16	24	25
W+jets theory	8	12	9
$t\bar{t}$ theory	3	8	11
Other background theory	10	16	22
MC statistics	15	17	18
Flavor tagging	18	47	37
Jet energy	3	7	11
Other experimental	2	4	3
Total systematic uncertainty	57	66	63
Data statistical uncertainty	82	75	77
Total uncertainty	100	100	100

Novel Analysis Techniques in Merged Region

- Reclustering(RC) jet extends the search range for scalar mass down to 20GeV
 - Jet reconstruction at low mass is challenging standard large-R jet is NOT supported for mJ below 50GeV
 - Jet mass well-defined: calculated from calibrated input jets and systematic uncertainty propagated
- Combining Large-R jet kinematics and sub-jet information for boosted Xbb tagging: DXbb tagger
 - High efficiency discriminating Hbb v.s. Top/QCD and mass-agnostic design applicable in a wide mass range
 - Calibrated using Zbb (signal jet efficiency) and semi-leptonic ttbar (background jet efficiency)

ATLAS Boosted Xbb jet tagging (DXbb)

1.0

DXbb v.s. 2 single-b jets tagging

Results & Latest Collider Constrain on Dark Higgs

No significant derivation from SM

Complete mass scan from 400GeV to 30GeV

Latest Collider Constrain on Dark Higgs

<u>Relic density compatible setup ($\Omega h^2 = 0.12$)</u>

Scenario2 (m_{χ} = 900GeV) Excluded $m_{Z'}$ up to 4.1 TeV Scenario3 (m_S = 70GeV) Excluded $m_{Z'}$ up to perturbative limit

Science Bulletin 69 (2024) 3005

<u>2407.10549</u>

Summary

- Recent searches for Dark Matter in 2HDM+a and dark Higgs at ATLAS reported
- Searches targeting different signatures combined in the context of 2HDM+a model
 - Benchmark of latest DM searches in ATLAS and new collider constraints derived
- Search for Dark Higgs in bb+MET final states using full Run2 data
 - Coherent relic density with cosmology and complete the scan of scalar mass in 30-400GeV
 - Enabled by novel ML-based mass-agnostic Xbb tagging and low mass boosted jet
- Still a lot to fully understand the DM but progressing + promising!
 - New jet flavor tagging based on advanced ML development (GN2, GN2X)
 - Trigger-level analysis utilizing more data statistics
 - Model independent DM searches using Anomaly Detection
 - Well accumulating ATLAS Run 3 data and hardworking CP efforts!

Stay Tuned!

FTAG-2023-01

More we tag, Less the unknown!

ATLAS Luminosity

DM Interaction

DM Theory

28

Sc	enario		Fixed	l parameter v	alues		Varied parameters
		$\sin \theta$	<i>m</i> _A [GeV]	<i>m</i> _{<i>a</i>} [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	a	0.35	_	_	10	1.0	(m m)
1	b	0.70	_	_	10	1.0	(m_a, m_A)
2	a	0.35	_	250	10	_	$(m + top \theta)$
2	b	0.70	—	250	10	_	$(m_A, \tan \beta)$
2	a	0.35	600	_	10	_	(m, top 0)
3	b	0.70	600	_	10	_	$(m_a, \tan \beta)$
4	a	_	600	200	10	1.0	sin 0
4	b	_	1000	350	10	1.0	SIII Ø
5		0.35	1000	400	_	1.0	m_{χ}
6		0.35	1200	_	_	1.0	(m_a, m_{γ})

Sc	enario		Fixe	d parameter v	alues		Varied parameters
		$\sin \theta$	<i>m</i> _A [GeV]	m_a [GeV]	m_{χ} [GeV]	$\tan\beta$	· · · · · · · ·
1	a	0.35	_	-	10	1.0	()
I	b	0.70	_	-	10	1.0	(m_a, m_A)
2	a	0.35	_	250	10	_	(
2	b	0.70	_	250	10	_	$(m_A, \tan\beta)$
2	a	0.35	600	_	10	_	(
3	b	0.70	600	_	10	_	$(m_a, \tan\beta)$
4	a	_	600	200	10	1.0	
4	b	_	1000	350	10	1.0	sin θ
5		0.35	1000	400	_	1.0	m _y
6		0.35	1200	_	-	1.0	(m_a, m_y)

Sc	enario		Fixe	d parameter v	alues	Varied parameters	
		$\sin \theta$	<i>m</i> _A [GeV]	<i>m</i> _a [GeV]	m_{χ} [GeV]	$\tan \beta$	
1	а	0.35	-	-	10	1.0	(
1	b	0.70	-	-	10	1.0	(m_a, m_A)
2	a	0.35	_	250	10	_	(m. tan O)
2	b	0.70	_	250	10	_	$(m_A, \tan \beta)$
2	a	0.35	600	_	10	_	(m tan ())
3	b	0.70	600	_	10	_	$(m_a, \tan\beta)$
4	а	_	600	200	10	1.0	
4	b	_	1000	350	10	1.0	sin 0
5		0.35	1000	400	_	1.0	m_{χ}
6		0.35	1200	_	_	1.0	(m_a, m_y)

https://mp.weixin.qq.com/s/l1Mgrwyh15KMKnf9r9yjsQ

Boosted Xbb tagger in ATLAS

DXbb tagger [ATL-PHYS-PUB-2020-019] Deep Neural Network based Xbb tagging Hbb(mass-agnostic) v.s. QCD v.s. Top

Updated! GN2X tagger [ATL-PHYS-PUB-2023-021] Transformer based Xbb tagging (New analyses coming soon!)

Dark Higgs

Relic-coherent 3-D Parameter Space

How <u>relic density</u> used to reduce parameter space of DM model

Reco Analysis Result

Set the final exclusion limit

Run: 283780 Event: 694330347 2015-10-28 05:33:39 CEST

[1] V. Silveira, A. Zee, Phys. Lett. B161, 136 (1985)
[2] Eur.Phys.J.C 73 (2013) 6, 2455
[3] Phys. Rev. D 90, 055014 (2014)

- SM Invisible Higgs decay via $ZZ^* \rightarrow 4nu$ and $Br^{\sim}0.1\%$
- Many DM theory models contribute to BSM invisible Higgs decay
 - Higgs portal[1][2][...] with m_WIMP<mh/2
 - Scalar, Majorana fermion, vector like DM
 - UV-complete model (vector DM)[3,...]: U(1)' gauge field
 - Adding singlet-like scalar and mixing to SM H to be UV-complete
 - Similar to dark Higgs while no heavy mediator Z' involved (more like typical WIMP)
- Limit converted to spin-independent WIMP-nucleon XS
 - Comparable to direct search

Invisible Higgs

Phys. Lett. B 842 (2023) 137963

Invisible Higgs

