

<u>JHEP08(2024)013:</u> Search for A/H Decaying to $t\bar{t}$ in ATLAS

CLHCP Conference

Qingdao, Shandong 16th November 2024 Yizhou Cai (Nanjing U.)

Introduction

- Search for production of new heavy scalars and pseudoscalars decaying to ttbar
 - $g g \rightarrow A/H \rightarrow t \bar{t}$
- Full Run2 dataset at ATLAS, 140 ifb
- Motivation:

2024/11/16

- Predicted in 2HDM, hMSSM, 2HDM+a, ALPs, ...
 - Many BSM solutions involve extended Higgs sectors
- Sensitive in general for high-mass spin-0 resonance
- Challenge: strong interference between signal and SM ttbar background
 - Non-trivial to model and treat statistically
 - Interference pattern depends strongly on signal parameters

Analysis Strategy

- Two orthogonal analysis channels: 1L (e or μ) + 2L (e^-e^+ , $e\mu$, $\mu^-\mu^+$)
- Final discriminant:
 - 2L channel: m_{llbb} as proxy of $m_{t\bar{t}}$
 - 1L channel: reconstruct full ttbar system and use $m_{t\bar{t}}$
 - Resolved: \geq 4 small-R jets assigned via χ^2 algorithm
 - Boosted: large variable-R jet optimised for intermediate top boosts

Split resolved signal regions into bins of angular variables 1L: $\cos \theta^*$ •

- $\Delta \phi_{II}$ 2L:
- Sensitive to spin state of the ttbar system •
- Improved signal-background discrimination •
- 16 signal regions in total

Categorization

- 1L merged •
- 1L resolved 1b in 5 $\cos \theta^*$ bins •
- 1L resolved 2b in 5 $\cos \theta^*$ bins .
- 2L in 5 $\Delta \phi_{II}$ bins ۲

2024/11/16

Modelling

- Signal
 - Implemented at LO using MadGraph5
 - Scaled to NNLO prediction from SusHi
 - Employ a MadGraph hack by subtracting B contribution from ME to produce S+I samples

Background

- ttbar: dominant and irreducible background
 - Correct NLO Powheg+Pythia MC to NNLO-QCD+NLO-EW
 - Via Iterative recursive reweighting in $m_{t\bar{t}}$, $p_T(t)$, $p_T(\bar{t})$
- W+jets, Z+jets
 - Data-driven correction on MC
- Multi-jet
 - Estimated from data using matrix-method
- Other small bkgs
 - MC

Systematic Uncertainties

- Largest source from SM ttbar modelling
 - NNLO:
 - Uncertainties in reweighting
 - Scale and PDF uncertainties on calculation
 - Uncertainty on EW component from PDFs
 - Line-shape: comparison with MadSpin
 - PS: Pythia vs Herwig
 - Strongest constraint as observed in other ATLAS Top analyses
- Uncertainties from alternative samples with nonnegligible constraints are treated un-correlated across SRs and split into shape/normalization component
 - Considered to be conservative
 - Including PS, ME-PS, ...

	ļ		1
2024/11	/	1	6

Uncertainty component	Fractional contribution [%]		
	$m_A = 800 \text{ GeV}$	$m_A = m_H = 500 \text{ GeV}$	
	$\tan \beta = 0.4$	$\tan\beta = 2.0$	
Experimental	30	42	
Small- <i>R</i> jets (JER, JES)	22	29	
Large-VR jets	11	20	
Flavour tagging	13	17	
Leptons	4	5	
Other ($E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14	
Modelling: SM $t\bar{t}$ and signal	91	79	
<i>tī</i> NNLO	49	28	
$t\bar{t}$ lineshape	27	29	
$t\bar{t}$ ME-PS ($p_{\rm T}^{\rm hard}$)	36	30	
$t\bar{t}$ ME-PS (h_{damp})	41	25	
<i>tī</i> ISR& FSR	9	13	
tī PS	29	41	
$t\bar{t}$ cross-section	21	31	
$t\bar{t}$ Scales & PDF	21	16	
m_t	6	4	
Signal	19	9	
Modelling: other	41	16	
W+jets	11	8	
Z+jets	1	2	
Multijet	27	10	
Fakes	<1	1	
Other bkg.	29	10	
MC statistics	18	26	
Total systematic uncertainty	±100	±100	
Total statistical uncertainty	< 1	< 1	

Statistical Analysis

- Extend likelihood to include interference term
 - $\mu S + \sqrt{\mu} I + B = (\mu \sqrt{\mu}) S + \sqrt{\mu} (S + I) + B$
 - Quadratic dependence on $\sqrt{\mu}$ ٠
- Design interference-specified statistical method
 - Including offset to handle the negative histograms •
 - Choice of test statistics: ٠
 - Search stage $q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\hat{\theta}}_0)}{\mathcal{L}(\sqrt{\mu}, \hat{\theta}_{\sqrt{\mu}})}$ Exclusion stage $q_{1,0} = -2\ln \frac{\mathcal{L}(1, \hat{\hat{\theta}}_1)}{\mathcal{L}(0, \hat{\hat{\theta}}_0)}$
 - New ATLAS baseline limit band calculation •
 - Previous method using $\pm N\sigma$ Asimov give asymmetry bands and unphysical crossing ٠
 - $\sigma^2 S \sigma I + B \text{ vs. } B \text{ vs. } \sigma^2 S + \sigma I + B$
 - Directly represent the hypotheses that have an exclusion rate between $\phi(\pm N)$ ٠
 - Assuming standard Gaussian distribution •
 - Interpolate $\ln p_{CLS}$ between signal hypotheses

Search Stage

Tested agreement between data and S+I+B hypotheses with masses [400,1400] GeV and widths [1,40]%

• Most significant deviation from SM-only: 2.3σ at $m_A = 800$ GeV, $\Gamma/m = 10\%$, $\sqrt{\mu} = 4.0$

8

Exclusion on 2HDM and hMSSM

- Strongest mass exclusion at low $\tan \beta$ to date
- Stop at 400GeV because the signal k-factor for NNLO prediction become large
 - LO signal model considered bad approximation of actual interference pattern

Exclusion on Coupling

$g_{\phi t\bar{t}}^2 = \sqrt{\mu}$

Conclusion

- Search for ttbar decayed from heavy Higgs boson with interference
 - 1-lepton, 2-leptons channels
- Results interpreted in various benchmark models
 - 2HDM, hMSSM, 2HDM+a
- Most stringent constraints on the 2HDM and hMSSM parameter space in the region of high m_A and low tan β to date
- No significant deviation from the SM prediction is observed
 - Did we consider too much flexibility in terms of systematic uncertainty?
 - Further study on-going in reply to <u>CMS' latest result</u>

Backup

Event Selection 1L

Pre-selection:

- Standard run and event cleaning
- Single-lepton trigger, trigger matching
- Exactly 1 lepton with $p_{\rm T} > 28 {\rm GeV}$
- $E_{\rm T}^{\rm miss} > 20 {\rm GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 {\rm GeV}$
- \geq 1 b-tagged jet (DL1r 77% WP)

Resolved topology

- > Number of jets:
 - \geq 4 small-R jets
- > Well-reconstructed $t\bar{t}$:

•
$$\log_{10}(\chi^2) < 0.9$$

 $\chi^2 = \left[\frac{m_{jj} - m_W}{\sigma_W}\right]^2 + \left[\frac{m_{jjb} - m_{jj} - m_{t_h - W}}{\sigma_{t_h - W}}\right]^2$
 $+ \left[\frac{m_{jl\nu} - m_{t_l}}{\sigma_{t_l}}\right]^2 + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_h} - p_{T,t_l})}{\sigma_{dif f p_T}}\right]^2$

- > Orthogonality:
 - Veto events passing merged selection

Merged topology

- > Top tagging
 - \geq 1 large-R jet with $p_{\rm T}$ > 300GeV and m > 100GeV
 - Didn't use DNN top tagged jets
 - Our main sensitivity is < 1 TeV (intermediate boosts)
 - DNN top tagger is aimed at high boosts
- Close-to-lepton jet
 - $\geq 1 \text{ small-R jet with } \Delta R(l, \text{ jet}) < 2.0$
- Avoid overlap between objects
 - $\Delta R(l, t_h) > 1.5$
 - $\Delta R(b_l, t_h) > 1.5$

Event Selection 2L

Pre-selection:

- Standard run and event cleaning
- Single-lepton trigger, trigger matching
- Exactly 2 leptons (ee, eµ, µµ)
- \geq 2 small-R jets, \geq 1 b-tagged jet
- $m_{ll} > 15 \text{ GeV}$ (for ee and $\mu\mu$)

Signal region

- > Opposite-sign (OS) lepton pair
- > Z-veto (for ee and $\mu\mu$)
 - $m_{ll} < 81 \text{ GeV or } m_{ll} > 101 \text{ GeV}, E_T^{\text{miss}} > 45 \text{ GeV}$
- Lepton-b-jet pairs compatibility:
 - $m_{l^+b} < 150$ GeV or $m_{l^-b} < 150$ GeV for at least one b-jet assignment

Choice of Test Statistics

Search stage:

- Should we reject SM in favour of (any) BSM hypothesis?
- Test agreement of data with range of interference patterns
- Consider all possible values of POI

$$q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\theta}_0)}{\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\theta}_{\hat{\sqrt{\mu}}})}$$

Exclusion stage:

- Should we reject the BSM hypothesis under consideration?
- Test (dis)agreement of data with specific interference pattern of tested signal hypothesis

•
$$\sqrt{\mu} = g_{\phi t \bar{t}}^2$$
: $\sqrt{\mu}$ change $\implies g_{\phi t \bar{t}}$ change \implies width change \implies shape change $q_{1,0} = -2\ln \frac{\mathcal{L}(1, \hat{\hat{\theta}}_1)}{\mathcal{L}(0, \hat{\hat{\theta}}_0)}$

2024/11/16

Both are well defined in <u>1007.1727</u>

Ttbar Bound State

From theory calculation:

- Color-singlet
 - ${}^{1}S_{0}^{[1]}$
 - Peak below the ttbar threshold
- Color-octet
 - ${}^{1}S_{0}^{[8]} \text{ or } {}^{3}S_{1}^{[8]}$
- Expected to be small below the ttbar threshold

- The top Bohr radius $a_0 = \frac{2}{G_F \alpha_S m_t} \sim \frac{1}{20} \text{GeV}^{-1}$
- Lifetime of top $\sim \Gamma_t^{-1} = 1.5 \text{GeV}^{-1}$
- Possible gluon exchanges before the top decay
- Bound state -- toponium?
 - Probe of the QCD potential

16

Comparing with CMS

Sensitivity mostly come from 2L channel

Comparing with CMS

CMS

- 1L and 2L channel
- Split by lepton flavor
- 1L:
 - Not merged region
 - 5 bins in $\cos \theta^*$ (>=4j, >=2b)
 - 5 bins in $\cos \theta^*$ (==3j, >=2b)
- 2L:
 - Binned by c_{hel} and c_{han}

ATLAS

- 1L and 2L channel
- Not split by lepton flavor
- 1L:
 - Have merged region
 - 5 bins in $\cos \theta^*$ (>=4j, ==1b)
 - 5 bins in $\cos \theta^*$ (>=4j, >=2b)
- 2L:
 - Binned by $\Delta \phi_{ll}$

Angular Distribution

Comparing with CMS – 1

Comparing with CMS – 1

ATLAS:

• The disagreement disappear after Bonly fit

Ranking/Pull Plots

CMS Impact of NPs

In the toponium interpretation

- Top Yukawa has highest impact
- Top mass NP heavily constrained
- PS not included

2024/11/16