

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production in protonproton collisions at $\sqrt{s} = 13TeV$ with the ATLAS detector

Shanghai Jiao Tong University

November 16th, 2024

Motivation

Experimental

- Standard model 4-tops process
 - SM cross section expectation: $\sigma_{t\bar{t}t\bar{t}} = 13.37^{+1.04}_{-1.78} fb$
 - Latest measurement in ATLAS: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5}fb$
 - Inconsistence arises between the theory and the experiment

000

- Signal: $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$
 - Higgs mass: 0.4TeV to 1TeV with 0.1TeV granularity
 - **Decay channel:** one lepton (1L) + two opposite-sign lepton (2LOS)
 - Together constitute branching ratio of **56%**
 - Main background: $t\bar{t} + jets$
 - Final state signature: High jet & b-jet multiplicity
- Published for the same search in the di-lepton same-sign/multi-lepton channel (SSML channel) (link)

Analysis Strategy

Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	$N_{b}^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

- Analysis regions categorized by lepton, jet and b-tagging multiplicity
- Two types of data-driven correction factors:
 - Jet flavor normalization factors
 - Neural network (NN)-based kinematic reweighting
- Trained H/A-mass-parameterized GNN to separate signals from background
- Profile likelihood fit in all CRs and SRs simultaneously, using H_T in CR and GNNscore in SR

Data & MC Samples and Event Selection

- Data: Full Run2 (2015-2018) ~ 139fb⁻¹, using single lepton triggers
- MC samples:
 - $t\bar{t}$ + jets, SM4t, ttW, ttZ, Single top, V + jets, ttt, Other top, VV, Signal
- Object definition & event selection:

Object	Baseline selection
Lepton	$\begin{array}{l} p_T > 28 GeV, \ \eta < 1.37 or 1.52 - 2.47(e), \ \eta < 2.5(\mu) \\ \mbox{Identification: TightLH(e)/Medium(\mu), Isolation: FCTight(e)/FCTightTrackOnly(\mu)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Jet	p _T >25GeV, η <2.5, JVT>0.5 for p _T < 60 GeV, η <2.4 Algorithm: Anti-k _T
b-jet	p _T >25GeV, η <2.5, JVT>0.5 for p _T < 60 GeV, η <2.4 Algorithm: DL1r
Event	Exactly one lepton (1L) / two opposite-charge leptons (2L) with ≥ 2 jets with b- tagging passing 70% OP

Background Modelling (flavor normalization)

- To correct the under-estimation of the $t\bar{t}$ + jets production rate in MC prediction
- $t\overline{t}$ + jets includes:
 - $t\bar{t} + \ge 1b$ (TTB): $t\bar{t} + at$ least one jet matched with b-hadron(s)
 - $t\bar{t} + \ge 1c$ (TTC): $t\bar{t} + at$ least one jet matched with c-hadron(s)
 - $t\bar{t}$ + light (TTL): $t\bar{t}$ + jets do not match with b or c-hadrons
- Data-driven fit to sum of pseudo-continuous b-tagging scores of 3rd and 4th jets
- Regions:7j(5j) = 2b ,=3b, ≥4b for 1L(2LOS) channel

Pre-fit & post-fit yields for HF normalization

Background Modelling (NN-reweighting)

- Kinematic reweighting based on Neural Network (NN)
 - NN output: a-posterior Bayesian probability

 $o(\mathbf{x}) \simeq P(data|\mathbf{x}) = \frac{\alpha_{data} P_{data}(\mathbf{x})}{\alpha_{data} P_{data}(\mathbf{x}) + \alpha_{MC} P_{MC}(\mathbf{x})}$

- Input list: Njets, NRCjets, each jets & lep pT, missing ET
- Training regions: ≥7j(5j), = 2b for 1L(2LOS)
- Using an exponential lose function:

$$\mathcal{L} = P_{data} e^{-o(x)/2} + P_{MC} e^{o(x)/2}$$

$$\frac{d\mathcal{L}}{do(x)} = 0 \Rightarrow -\frac{P_{data}}{2}e^{-\frac{o(x)}{2}} + \frac{P_{MC}}{2}e^{\frac{o(x)}{2}} = 0$$

• Reweighting factor can be derived as:

$$w(x) = \frac{P_{data}}{P_{MC}} = e^{o(x)}$$

0.9

GNN Score

m_H / GeV

Signal Background Discrimination (GNN)

For signal discrimination, GNN (graph neural network) has been used

Layer 3

- GNN is agnostic to the number of nodes and are permutation invariant.
- A relatively simple model can be used on events of varying multiplicity/topologies

920

900

880

860

840

820

800

400

events

Ъ

Fractior

Well suitable in our case with complex jet & b-jet multiplicity and structure

Layer 2

Layer 1

Layer 0

accumulation through the network

 Table of the grouped impact of nuisance parameters at mass point:

> 400 GeV ($\sigma_{t\bar{t}H/A \to t\bar{t}t\bar{t}}$)=17fb)
> 700 GeV ($\sigma_{t\bar{t}H/A \to t\bar{t}t\bar{t}}$)=6.1fb)
> 1000 GeV ($\sigma_{t\bar{t}H/A \to t\bar{t}t\bar{t}}$)=1.0fb)

tt + ≥1b modelling has the highest impact for all mass points

Uncertainty source	$\Delta \sigma_{t\bar{t}I}$			$t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ [fb]		
	$m_{H/A}$ =400 GeV		$m_{H/A}$ =700 GeV		$m_{H/A}$ =1000 GeV	
Signal Modelling						
BSM <i>tītī</i> modelling	< 1		+0.1	< 0.1	< 0.1	
Background Modelling						
$t\bar{t} + \ge 1b$ modelling	+11	-10	+3.7	-3.4	+1.9	-1.7
SM <i>tītī</i> modelling	+3	-3	+2.1	-2.1	+0.9	-0.9
$t\bar{t}$ +jets reweighting	+3	-3	+1.0	-1.0	+0.5	-0.5
$t\bar{t} + \ge 1c$ modelling	+2	-2	+0.9	-0.8	+0.4	-0.4
$t\bar{t}$ +light modelling	+1 -1		+0.2	-0.2	< 0.1	
Other background modelling		< 1	+0.4	-0.4	+0.2	-0.2
Experimental						
Jet energy scale and resolution	+4	-2	+1.3	-0.8	+0.5	-0.3
MC statistical uncertainties	+2	-3	+0.6	-0.7	+0.4	-0.4
<i>b</i> -tagging efficiency	+2	-1	+0.7	-0.4	+0.4	-0.4
Other uncertainties		< 1	+0.3	-0.5	+0.1	-0.2
Luminosity		< 1	+0.3	-0.1	<	: 0.1
Total systematic uncertainty	+13	-12	+4.8	-4.6	+2.5	-2.4
Statistical uncertainty	+6	-6	+3.3	-3.2	+2.3	-2.2
Total uncertainty	+14	-13	+5.6	-5.4	+3.2	-3.0

2HDM interpretation

- 95% CLs upper limits on the cross section of the production estimated
- No significance evidence for the heavy Higgs production

2HDM: Combination with 2LSS/ML

Sgluon interpretation

- Signal: $S_8S_8 \rightarrow t\bar{t}t\bar{t}$ (link)
 - $m_{S_8} \in [0.4, 1.5]$ TeV with 0.1TeV granularity
 - $m_{S_8} \in [1.75, 2.0]$ TeV with 0.25TeV granularity
- Combination using the same binning, MC background systematics correlation strategy as in H/A fit
- 95% CLs upper limits on the cross section of the production estimated
 - Sgluon masses $m_{S_8} \leq 1.3$ TeV are excluded

- Heavy Higgs production in the 4-top process has been searched using ATLAS full run-2 data
- Background correction with 2 data-driven factors
 - Flavor normalization
 - NN-reweighting
- Signal-background discriminated by GNN

		400 GeV	1000 GeV
• Limits of the 2HDM search in $t\bar{t}t\bar{t}$:	Upper limits on xsec of $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$	14fb	5.0fb
	Lower limits on tanβ	1.9	0.7

- Sgluon masses $m_{S_8} \leq 1.3$ TeV are excluded
- Submitted to EPJC (arXiv:2408.17164)

BACKUP

4tops in LHC

Samples

- Recent p-tag from the TOPQ1 has been used for over all MC/Data samples.
- AnalysisBase 21.2.169.
- Framework: TTHbb analysis (Link).
- Only prompt SM processes modelled with MC for background:

	Nominal	Alternative	
tī + jets	PhPy8 (5FS ttbb, inclusive + HF filtered +HT sliced)	Mg5Py8, PhHw, PhPy8 (4FS ttbb)	
SM4t	aMcAtNloPy8	aMcAtNloHerwig7, Sherpa	
ttW	Sherpa	aMcAtNloPy8	
ttZ	aMcAtNloPy8	Sherpa	
Single top	PhPy8	PhH7, aMcAtNloPy8	
V + jets	Sherpa	-	
ttt	Mg5Py8	-	
Other top, VV	MgPy8, aMcAtNloPy9	-	
Signal	Mg5Py8	-	

Background Composition

Background Composition

Performance of NN-reweighting

- Added several Data/MC comparison plots for the variables used in the MVA training (Appendix K.2)
 - Pre-fit plots without reweighting (left), pre-fit plots with reweighting (middle), post-fit plots (right)

• Shows good modelling after NN-reweighting and fitting

Heavy Flavor Correction Factor

- Regions: 7j (5j) for 1L (2LOS) with 2b, 3b, ≥4b
- Combined Fit with Nuisance Parameters Correlated among Channels
 - Unstable pulls is come from the performance differences among the two channels.
 - major differences can be found in NP bTag c-jets EV0 (C0) and bTag light-jets EV0 (L0)
- Combined Fit with C0 and L0 Decorrelated among Channels
 - Do not entirely resolve the issue

Heavy Flavor Correction Factor

• Combined Fit with Different Correction Factors Decorrelation among Channels:

✓ Decorrelated TTL:

- The correction factors derived from the combined fit are closed to and in between the results derived from 1L and 2LOS separated fits.
- Decorrelated TTC:
 - C0 pulls in the combined fit are opposite to the separated fits
 - μ TTC (1L) derived in the combined fit is deviated from the result derived in the 1L separate fit

Decorrelated TTB:

 The NP pulls and the HF correction factors are nearly the same as the case of without decorrelating the correction factors.

GNN VS BDT

- SM4top like BDT has been also studies with the same input list used as global feature in GNN
- Purposed as a benchmark, and used only for control
- GNN shows significant improvement comparing to BDT
- GNN and BDT shows same level agreement over the data/MC in SR
- Observed same level of pulls/constrains in fits using BDT or GNN
- GNN found to be more sensitive

Validation Regions

- Validation region defined in SM 4-top is studied 3bV(SM 4-top)
 - In our analysis this region found to be more sensitive than 3bH
 - Simply this two region definition swapped in our analysis
 - 3bV (SM 4-top) = 3bH & 3bH(SM 4-top) = 3bV

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_{b}^{85\%}$
2b	-	= 2	
3bL	≤ 2	= 3	-
3bH	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

NN-reweighting (loss function)

 \tilde{r}

Exponential Loss Binary Cross Entropy $\mathscr{L} = -p_A \log r' - p_B \log(1 - r')$ $\mathscr{L} = p_A e^{-r'/2} + p_B e^{r'/2}$ $\frac{\partial \mathscr{L}}{\partial r'} = -\frac{p_A}{2}e^{-r'/2} + \frac{p_B}{2}e^{r'/2} = 0 \rightarrow \left[e^{r'} = \frac{p_A}{p_B} = r\right] \qquad \frac{\partial \mathscr{L}}{\partial r'} = -\frac{p_A}{r'} + \frac{p_B}{1 - r'} = 0 \rightarrow \left[r' = \frac{p_A}{p_A + p_B} \rightarrow r = \frac{r'}{1 - r'}\right]$ Input variables Input variables Hidden Units Hidden Units Sigmoid Linear

NN-reweighting (loss function)

Exponential Loss

Binary Cross Entropy

Expected significance

SSML search

- ATLAS 2LSS/ML channel: similar strategy as the observation analysis
- Additional BDT to separate BSM vs SM $t\bar{t}t\bar{t}$

