

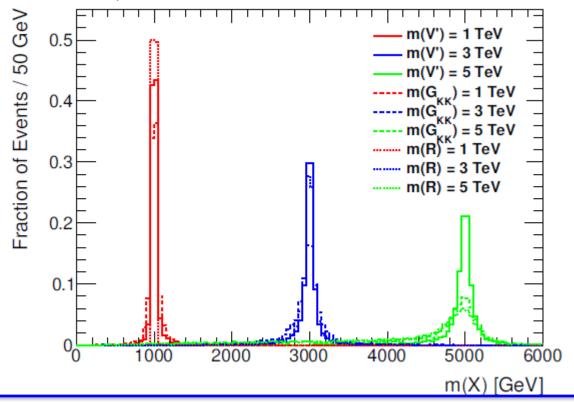
Combination of searches for heavy spin-1 resonances with the ATLAS detector

Rui Yuan 10th CLHCP, Qingdao 2024.11.16

Overview

Signal model

A phenomenological Heavy Vector Triplet (HVT) model with nearly degenerate W'/Z' and SM couplings as free
parameters


$$\mathcal{L}_{\mathcal{W}}^{\text{int}} = -g_q \mathcal{W}_{\mu}^a \bar{q}_k \gamma^{\mu} \frac{\sigma_a}{2} q_k - g_\ell \mathcal{W}_{\mu}^a \bar{\ell}_k \gamma^{\mu} \frac{\sigma_a}{2} \ell_k - g_H \left(\mathcal{W}_{\mu}^a H^{\dagger} \frac{\sigma_a}{2} i D^{\mu} H + \text{h.c.} \right)$$

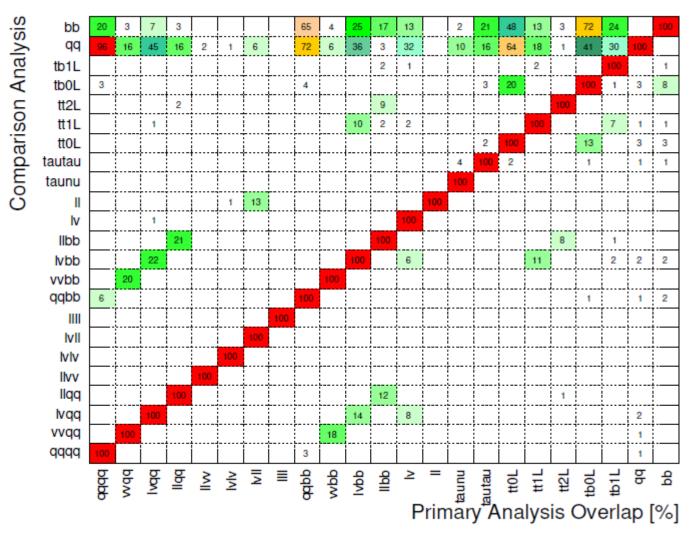
- Three typical models in two production modes:
 - $q\bar{q}$ production
 - Model A: weakly-coupled scenario, g_H = -0.56, g_f = -0.55
 - Model B: strongly-coupled scenario, g_H = -2.9, g_f = 0.14
 - VBF production
 - Model C: $g_H = 1$, $g_f = 0$

Signal templates

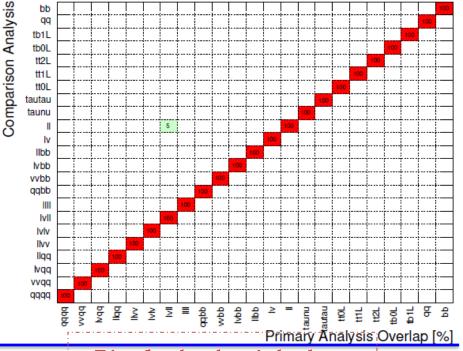
- Most signal samples: MG5_aMC@NLO+Py8
 - Some analyses used different signal templates or a generic width signal: validated and scaled to HVT XS
- Mass points of the signal samples are shown below

qqA	0.3-1.0 [0.1], 1.0-3.0 [0.2], 3.0-5.0 [0.5], 5.0-8.0 [1.0]
VBF	0.3-0.8 [0.1], 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.4, 2.6, 3.0, 3.5, 4.0

Combination analysis strategy

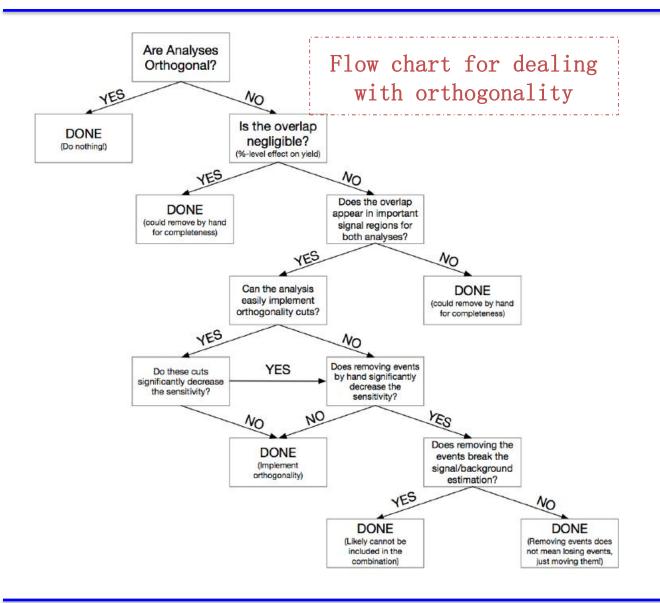

- Check the orthogonality among those analysis signal regions
 - A series of operations are applied to reduce the overlap
- Combine analyses
- Set limits in 1D and 2 D
 - 1D: exclusion of cross section as function of m_V ,
 - 2D: coupling planes
 - $\{g_H, g_f\}$, assuming fermion universality
 - $\{g_q, g_l\}, g_H$ =-0.56
 - $\{g_H, g_{q3}\}, g_{q12}=g_l=-0.55$
 - $\{g_{q3}, g_{l3}\}, g_{q12} = g_{l12} = -0.55, g_H = -0.56$
 - $\{g_{q12}, g_{q3}\}, g_H = g_l = 0$

Event selection


Analysis	Leptons	$E_{ m T}^{ m miss}$	Jets	b-tags	Top-tags	VBF	Discr.	Ref.
$WW/WZ \rightarrow qqqq$	0	Veto	$\geq 2J$	-	-	-	m_{VV}	[9]
$WW/WZ o \ell \nu qq$	$1e,1\mu$	Yes	$\geq 2j, \geq 1J$	0, 1, 2	-	Yes	m_{VV}	[10]
WZ o qq u u	0	Yes	≥1J	0	-	Yes	m_{VV}	[10]
$WZ o qq\ell\ell$	$2e,2\mu$	-	$\geq 2j, \geq 1J$	0	-	Yes	m_{VV}	[10]
$WZ \to \ell \nu \ell \ell$	$3 \subset (e, \mu)$	Yes	-	0	-	Yes	m_{VV}	[11]
$WH/ZH \rightarrow qqbb$	0	Veto	≥2J	1, 2	-	-	m_{VH}	[12]
ZH o u u bb	0	Yes	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
$WH o \ell u bb$	$1e,1\mu$	Yes	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
$ZH ightarrow \ell\ell bb$	$2e, 2\mu$	Veto	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
ℓu	$1e, 1\mu$	Yes	-	-	-	-	$m_{ m T}$	[15]
au u	1 au	Yes	-	-	-	-	$m_{ m T}$	[16]
$\ell\ell$	$\geq 2e, \geq 2\mu$	-	-	-	-	-	$m_{\ell\ell}$	[14]
au au	$0,1e,1\mu$	Yes	-	$0, \geq 1$	-	-	$m_{ au au}$	[17]
tt0L	0	-	2J	1, 2	2	-	m_{tt}	[19]
${ m tb0L}$	0	-	$\geq \! (1j \! + \! 1J)$	≥ 1	1	-	m_{tb}	[20]
${ m tb1L}$	$1e,1\mu$	Yes	2j, 3j	1, 2	-	-	m_{tb}	[20]
qq	0	-	2j	0	-	-	m_{jj}	[18]
bb	0	-	2j	1, 2	-	-	m_{bb}	[18]

Generally orthogonal

Orthogonality



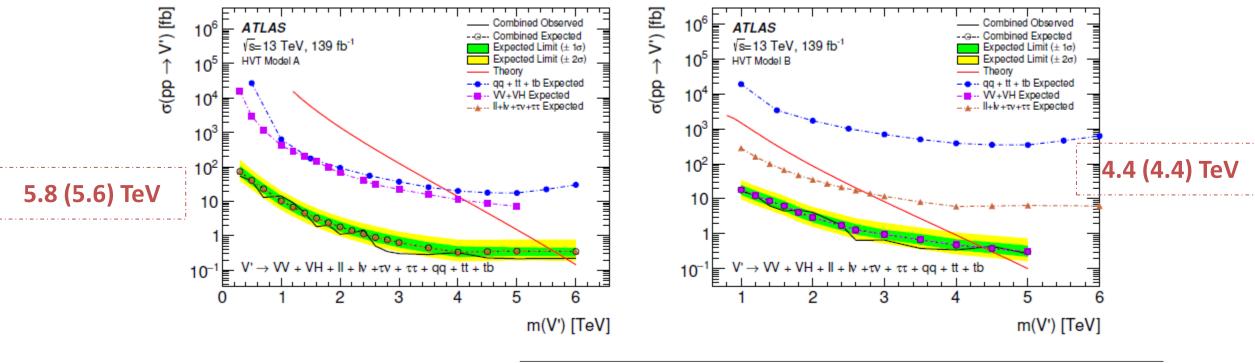
- Use MC sample to check the orthogonality
- The contents of each cell indicate the percentage of MC events common to the analysis selection of each corresponding row and column (y/x).

Final check with data

Orthogonality

- Minimal additional requirements are applied to achieve orthogonality
- Complementary kinematic cuts are applied
- An analysis priority order is established to preferentially remove
- Only in signal regions

Analysis	Original Selection	Additional Selection
$VH \rightarrow \nu \nu bb$	m(jj) or m(J) window	m(jj) > 100 GeV
$VH \rightarrow \ell \nu bb$	m(jj) or m(J) window	m(jj) > 106 GeV
$VH \rightarrow \ell\ell bb$	m(jj) or m(J) window	m(jj) > 100 GeV
$VH \rightarrow qqbb$	$p_T(J)$ dependent	m(J) > 106 GeV
tb0L	-	Second W and top-tag veto
tb1L	-	Second W and top-tag veto
qq	-	Remove overlapping events
bb	-	Remove overlapping events

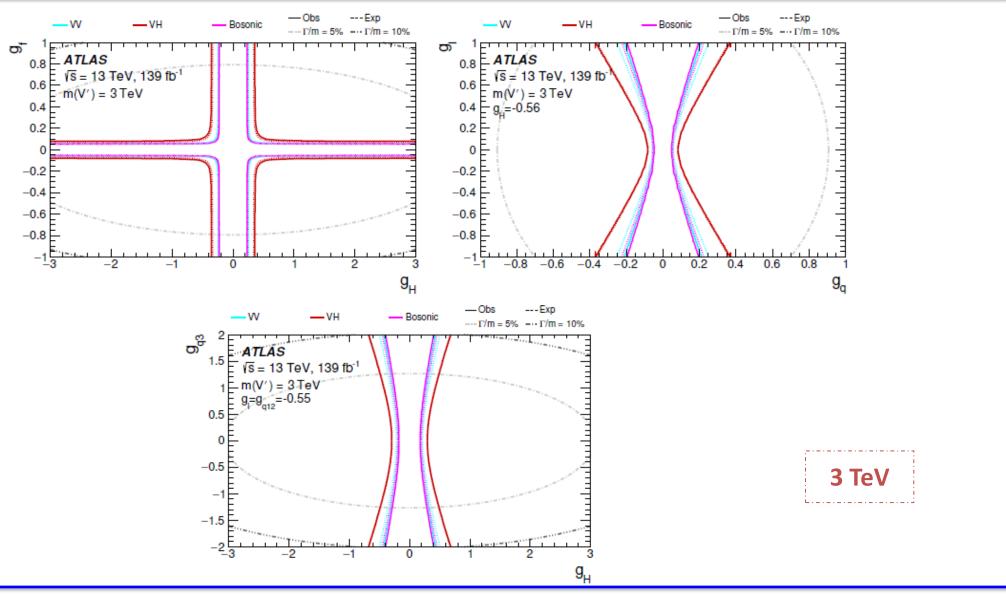

Systematics

- Experimental systematic uncertainties are correlated in different channels if they are exactly same,
 otherwise treated as uncorrelated
- Theoretical uncertainties are treated correlated or not should depend on the process
- Systematic uncertainties weaken the upper limit on the cross-section by up to 20%

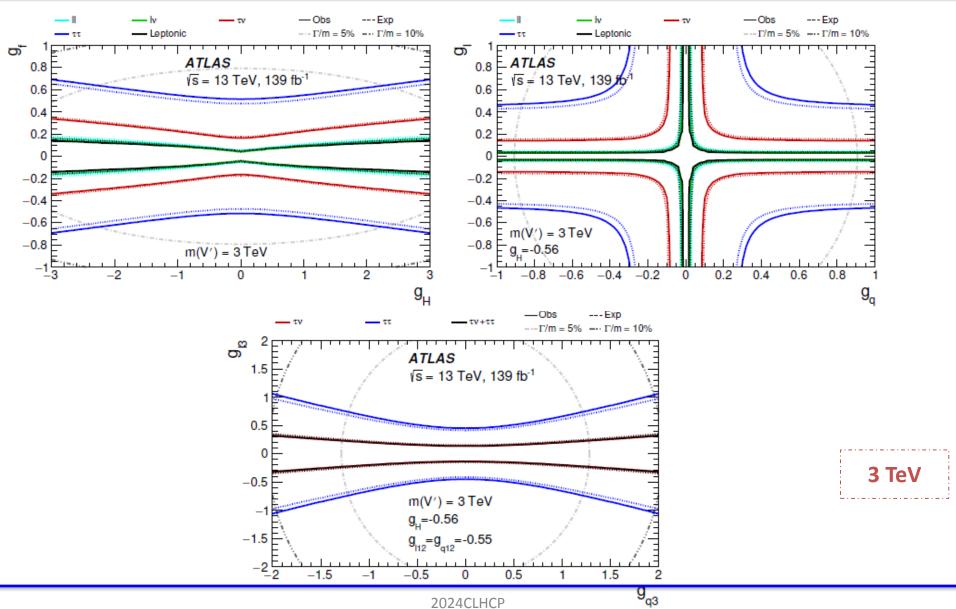
Systematic Source	$WW(\ell\nu\ell\nu)$	$(V)WW(\ell \nu q)$	$q)WZ(\ell\ell qq)$	$WZ(\nu\nu q)$	$q) WZ(\ell\ell\ell\nu)$	$WH(\ell \nu b)$	b)WH(vvbb)) <i>l</i> v	$\tau \nu$	$\tau \tau$	qq	tt1L	tt2L	tb0L	tb1L
Small-R jet energy resolution	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Small-R jet energy scale	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Small- R jet flavor	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B		S+B	S+B	S+B	S+B
Small-R jet pileup	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			S+B	S+B	S+B	S+B
Small-R jet punch-through	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			S+B	S+B	S+B	S+B
Small-R jet JVT	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B				S+B	S+B	S+B	S+B

Systematic Source	$WW(\ell \nu \ell)$	$(v) WW (\ell vqq)$	$Q)WZ(\ell\ell qq)$	$WZ(\ell\ell\ell\nu)$	$WH(\ell \nu b)$	$b) ZH(\ell\ell bb)$	$\ell\ell$	$\ell \nu$	tt1L	tt2L	tb1L
Electron energy resolution	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	
Electron energy scale	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Electron identification	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Electron reconstruction	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			
Electron isolation	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			
Electron trigger	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			
Muon momentum resolution	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Muon momentum scale	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Muon reconstruction	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	
Muon isolation	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			
Muon trigger	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	
Muon Sagitta	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B

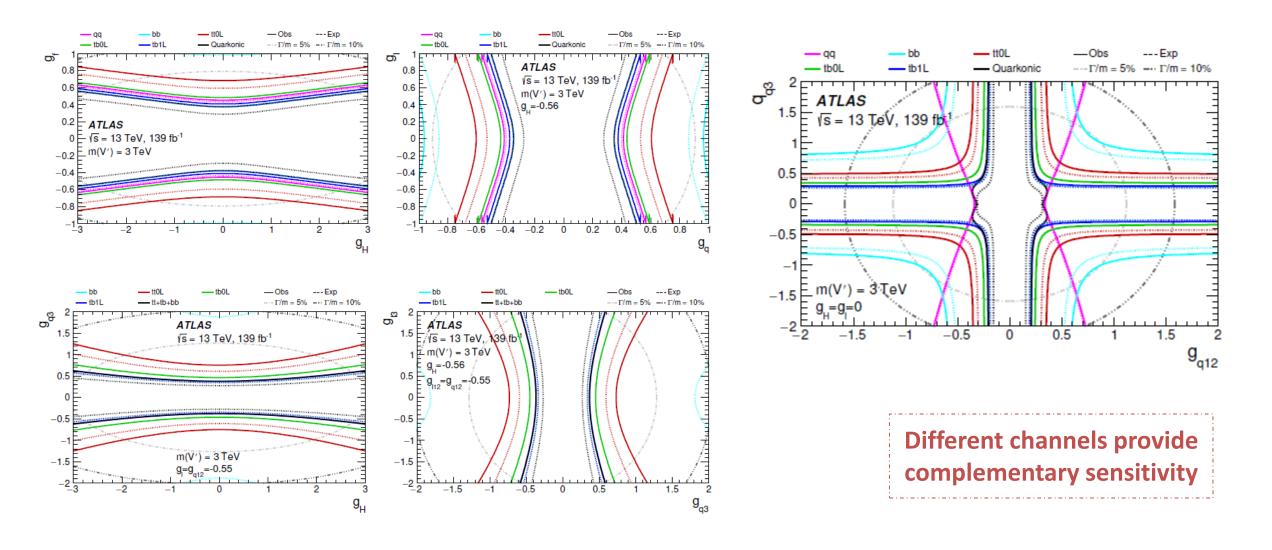
1D Result: Model A&B

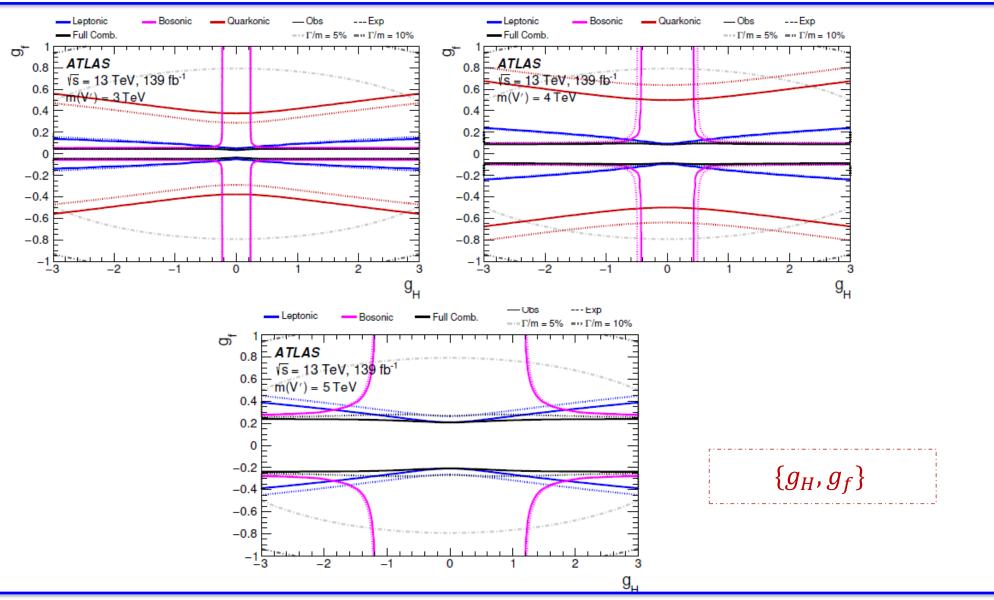

No significant excess is observed

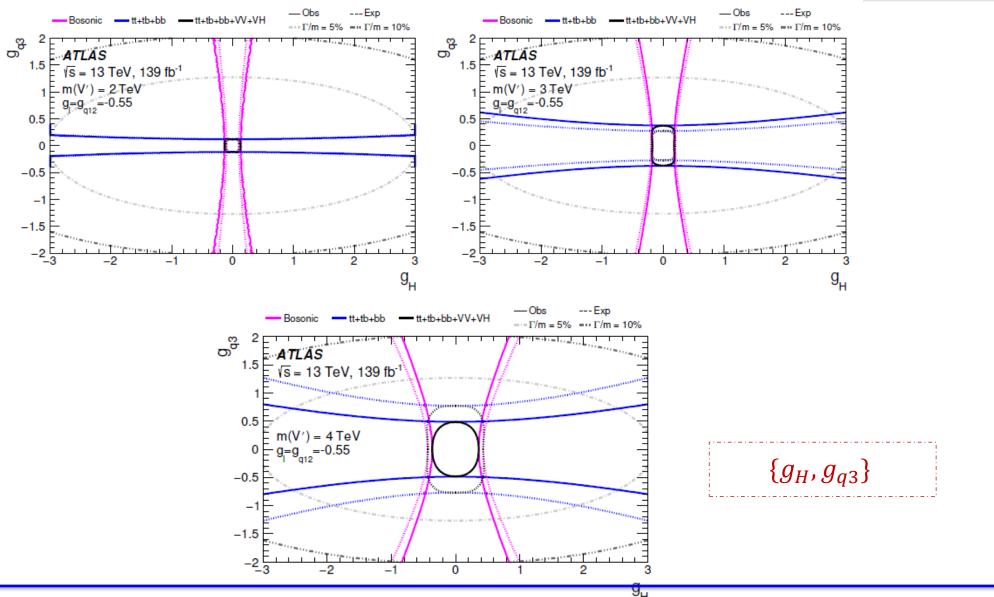
Channel	HVT model A	exclusion limit	HVT model B exclusion limit				
Channel	Observed [TeV]	Expected [TeV]	Observed [TeV]	Expected [TeV]			
VV	4.1	4.0	4.3	4.2			
VH	3.6	3.5	3.9	3.9			
Bosonic	4.3	4.1	4.4	4.4			
Leptonic	5.8	5.6	3.2	2.7			
Quarkonic	4.1	3.8	-	-			
Full combination	5.8	5.6	4.4	4.4			

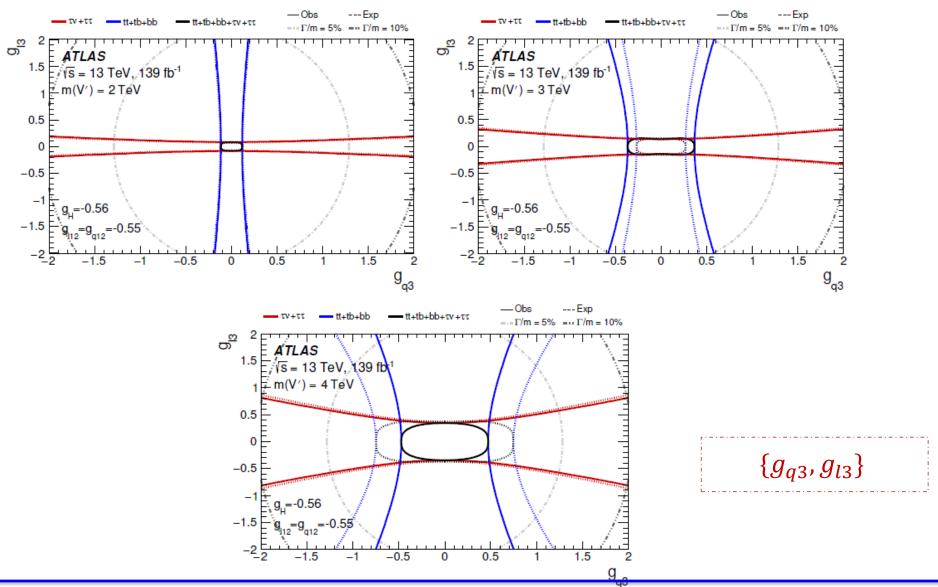


0.4 (0.5) TeV

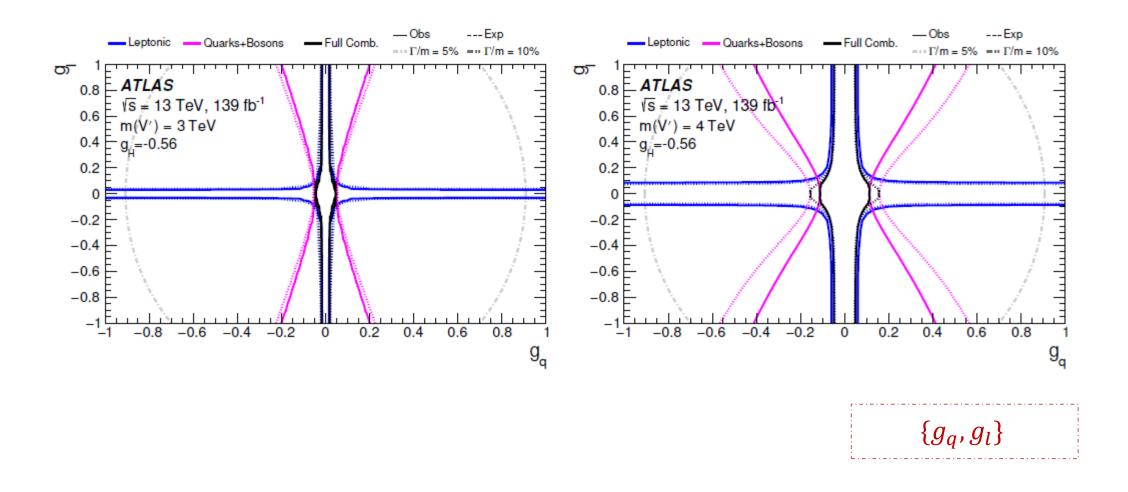

2D Result: Bosonic subcombination

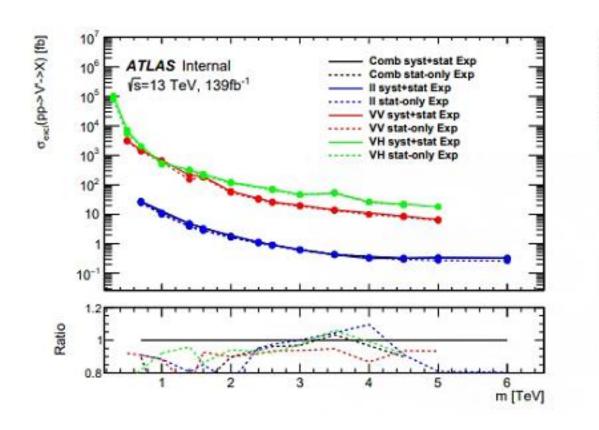


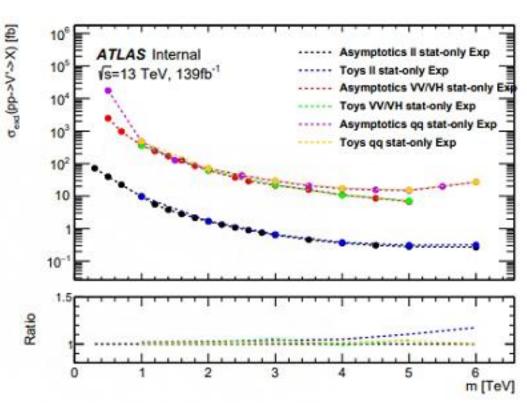

2D Result: Leptonic subcombination

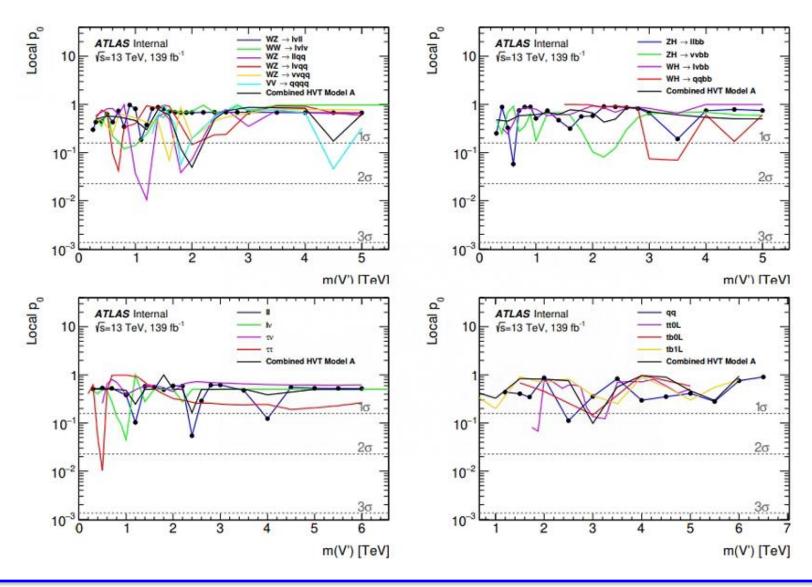


2D Result: Quarkonic subcombination






Summary


- Combination of searches for heavy spin-1 resonances analysis is done by using ATLAS full Run-II $139fb^{-1}$ data
 - Include 18 final states
- No significant excess is observed
- HVT models are used for interpretation
 - 1D limits: m_V , is excluded up to 5.8 TeV and 4.4 TeV for Model A and B respectively, for Model C, results for several g_H choices are shown
 - 2D limits: multiple 2D planes explored

Backup

