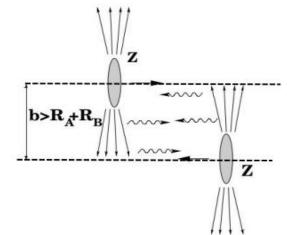


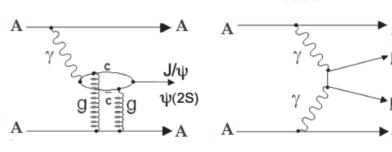
Coherent charmonium production in ultra-peripheral lead-lead collisions at LHCb

Xiaolin Wang, Hengne Li South China Normal University

Xiaolin Wang xiaolin.wang@cern.ch

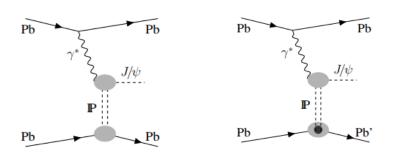
CLHCP2024 2024年11月15日·青岛




Ultra-peripheral PbPb Collisions

► Ultra-Peripheral Collisions(UPCs):

- Two incoming nuclei bypass each other with an impact parameter greater than the sum of their radii.
- Reactions in which two ions interact via their cloud of semi-real photons.
- The photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus.
- Photon-induced quarkonium production: A $q\bar{q}$ loop created by the photon interaction with a pair of gluon exchange (pomeron) to produce a quarkonium($c\bar{c}$, $b\bar{b}$).
- Non-resonant background: $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$.



J/ψ production in UPC

- \triangleright Coherent J/ ψ production, photon interacts with a pomeron emitted by the entire nucleus.
- > Incoherent J/ψ production, the photon interacts with a pomeron emitted from a single nucleon within the target nucleus.
- \triangleright J/ ψ from the feed-down of coherent and incoherent $\psi(2S)$ production.
- > Study of coherent charmonium production could constrain the gluon Parton Distribution Functions in nuclei.
- The ratio of J/ ψ and $\psi(2S)$ is helpful to constrain the choice of the vector meson wave function in dipole scattering models. [e.g. PLB 772 (2017) 832; PRC (2011) 011902]

Coherent J/ψ production

Incoherent J/ψ production

LHCb Detector

> LHCb detector is a single-arm forward spectrometer fully instrumented in unique kinematic coverage: 2<η<5.

Vertex Detector

Reconstruct vertices
Decay time resolution: 45 fs

Impact parameter resolution: 20 μm

➤ A high precision detector with excellent particle identification, precise vertex and track reconstruction.

RICH detectors Calorimeters K, π , p separation Energy measurement $\epsilon(K \rightarrow K) \sim 95\%$ e/γ identification mis-ID $\epsilon(\pi \to K) \sim 5\%$ $\Delta E/E = 1\% \oplus 10\%/\sqrt{E}(GeV)$ Diploe Magnet Muon system Tracking system Bending power: 4 Tm μ identification Momentum resolution $\epsilon(\mu \rightarrow \mu) \sim 97\%$

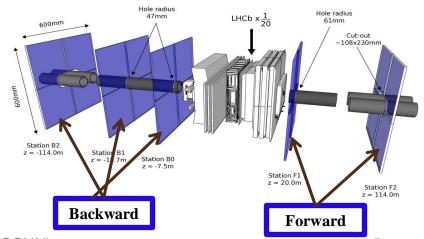
 $\Delta p/p = 0.5\% - 1.0\%$

(5 GeV/c-100GeV/c)

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

mis-ID $\epsilon(\pi \to \mu) \sim 1-3\%$

Event selection

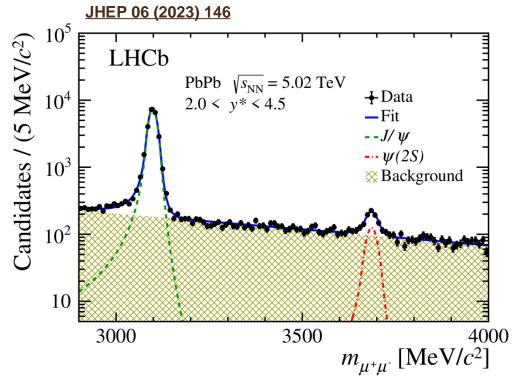

- ➤ Dataset: J/ $\psi \to \mu^+ \mu^-$ and $\psi(2S) \to \mu^+ \mu^-$ events from PbPb collisions at $\sqrt{s} = 5.02 \text{TeV}$ taken in 2018 with luminosity 228 ± 10 μb^{-1} .
- \triangleright Differential cross-sections of coherent J/ ψ and $\psi(2S)$ photon-production are measured as:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

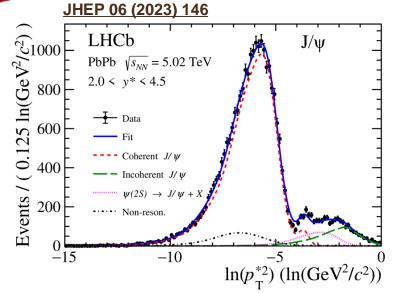
- > Event selection:
- only two long tracks reconstructed for muons, with acceptance cuts:

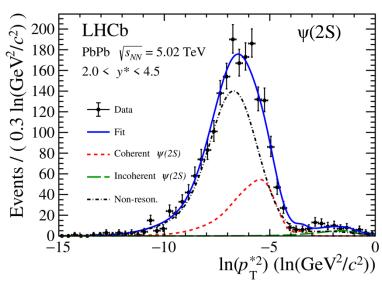
$$2.0 < \eta^{\mu^{\pm}} < 4.5, p_{T}^{\mu^{\pm}} > 700 MeV,$$

 $p_{T}^{\mu^{+}\mu^{-}} < 1 GeV, |\Delta \phi_{\mu^{+}\mu^{-}}| > 0.9\pi$


 HeRSCheL detector is used to further purify the selection. [2018 JINST 13 P04017]

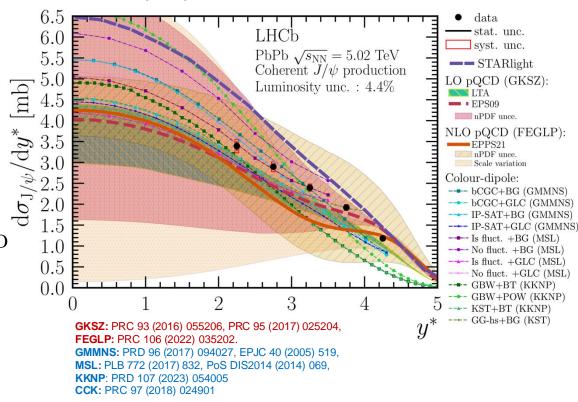
Signal extraction


Signal extraction step1: Charmonium
 yields are extracted from dimuon massfit.


- Double-sided crystal ball function for the J/ψ and $\psi(2S)$ yields.
- Exponential function for the nonresonant background are extracted from dimuon massfit.

Signal extraction

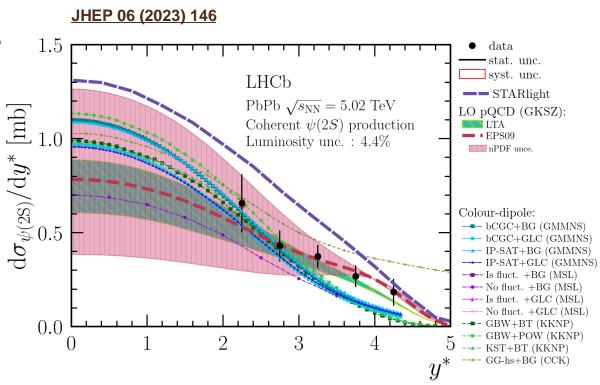
- \triangleright Signal extraction step2: Coherent component is extracted from a $\ln(p_T^2)$ fit.
- ➤ All signal pdfs are estimated using the <u>STARLight</u> generator and the LHCb detector simulation.
- ➤ The shape of background taken from the side-band method, then the normalization is fixed from mass fit.



Cross-sections in rapidity

- The most precise coherent J/ψ production measurement in PbPb UPC in forward rapidity to date.
- ➤ The high precision LHCb data are of great value in theoretical model fine-tuning.
- Compare to most recent theoretical calculations:
 - p-QCD calculations: include new NLO
 p-QCD calculation PDF uncert. and
 factorization scale uncert.
 - Color-dipole models: draw different model tuning options as theoretical variations.

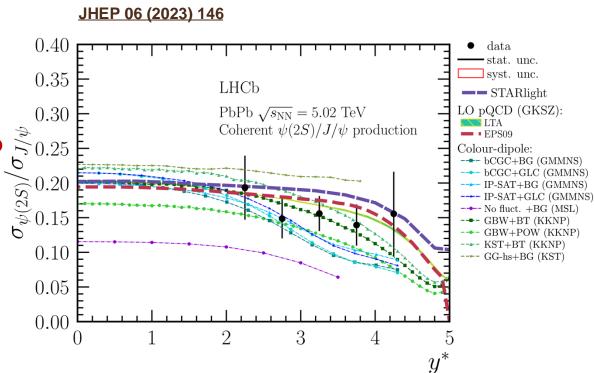
JHEP 06 (2023) 146



Cross-sections in rapidity

- The first precise coherent $\psi(2S)$ production measurement in PbPb UPC in forward rapidity at LHC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

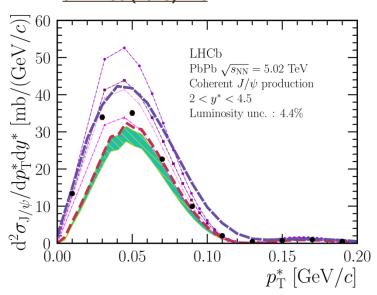
GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

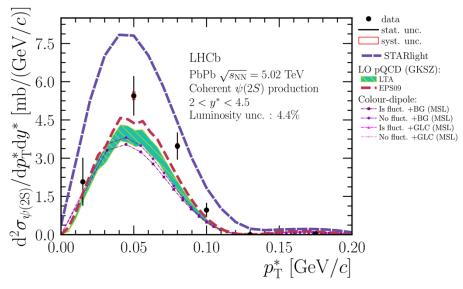


Cross-sections in rapidity

- The first cross-section ratio between coherent J/ψ and $\psi(2S)$ vs. rapidity measurement in forward rapidity region at LHC.
- Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

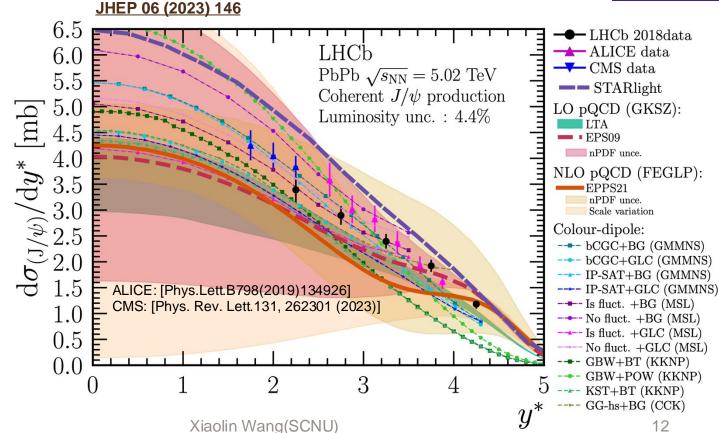




Cross-sections in p_T

JHEP 06 (2023) 146

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **MSL:** PLB 772 (2017) 832, PoS DIS2014 (2014) 069,


- \triangleright The first coherent J/ ψ and ψ (2S) production measurement in p_T in PbPb UPC.
- ➤ Compare to most recent theoretical calculations of p-QCD calculations and color-dipole models.

Compare with other results

Results are compatible with coherent J/ψ production measurement by ALICE and CMS results.

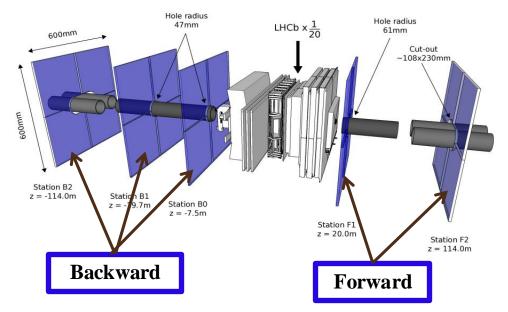
Conclusion

- Measurements of exclusive coherent J/ ψ and ψ (2S) production and their cross-section ratio in UPC PbPb collisions using 2018 dataset.

 JHEP 06 (2023) 146
 - The most precise coherent J/ψ production measurement in forward rapidity region in PbPb UPC to date.
 - The first coherent $\psi(2S)$ measurement in forward rapidity region in PbPb UPC at LHC.
 - The first measurement about coherent J/ ψ and ψ (2S) production cross-sections vs. p_T in PbPb UPC.
- The results are compatible with current theoretical predictions, providing strong constraints for the fine-tuning of the different models.
- \triangleright More results are ongoing: $c\bar{c}$, $b\bar{b}$, K^+K^- , $\pi\pi$, ϕ , etc...

Thanks!

Back up



HeRSCheL detector

[2018 JINST 13 P04017]

- ➤ HeRSCheL(High Rapidity Shower Counters for LHCb), is a set of plastic scintillators located in the LHC tunnel on both sides of the LHCb interaction point, in order to extend the pseudo-rapidity coverage of the LHCb in the high-rapidity regions either side of the interaction point.
- ➤ HeRSCheL detector extends the LHCb forward coverage up to a pseudo-rapidity of around 10.
- ➤ HeRSCheL detector is used to cut the component with large momentum, for example, the incoherent component.

Cross-sections results

JHEP 06 (2023) 146

➤ Integrated cross-section and ratio (most precise measurements in the forward region at this moment):

$$\begin{split} \sigma^{coh}_{J/\psi} &= 5.\,965 \pm 0.\,059(stat) \pm 0.\,232(syst) \pm 0.\,262(lumi) \; mb, \\ \sigma^{coh}_{\psi(2S)} &= 0.\,923 \pm 0.\,086(stat) \pm 0.\,028(syst) \pm 0.\,040(lumi) \; mb, \\ \sigma^{coh}_{\psi(2S)}/\sigma^{coh}_{J/\psi} &= 0.\,155 \pm 0.\,014(stat) \pm 0.\,003(syst). \end{split}$$

> Systematic uncertainties:

Source	Relative uncertainty [%]	
	$\sigma_{J/\psi}^{\mathrm{coh}}$	$\sigma_{\psi(2S)}^{\mathrm{coh}}$
Tracking efficiency	0.5 – 2.0	0.5 – 2.0
PID efficiency	0.9 - 1.6	0.9 - 1.6
Trigger efficiency	2.7 - 3.7	2.1 – 2.5
HERSCHEL efficiency	1.4	1.4
Background estimation	1.2	1.2
Signal shape	0.04	0.04
Momentum resolution	0.9 - 34	1.3 – 27
Branching fraction	0.6	2.1
Luminosity	4.4	4.4