

Jone of the first of the first of the second second

· TATI [m]

CLHCP 2024

h-Strangeness correlations in Run 3 with Alice

Kai Cui kai.cui@cern.ch Central China Normal University

Introduction and motivation

•Data sample and event selection

•Analysis algorithm

•Preliminary results

Introduction and motivation

- Strangeness enhancement: well-known in small systems by now
- Characterization: if the origin is common in all systems?
- Is strangeness enhancement correlated with high-momentum or low-momentum physics?
- The relationship between enhancement effect and strangeness
- Previous studies have done in Run 2 (Lund group)
- Now: take advantage of Run 3 data samples!
 - Enormous statistics may allow for very precise study

Data sample and event selection

- Data: pp collisions at 13.6 TeV collected in 2022 500 x 10⁹ events
- Monte Carlo (MC): LHC23k2d (anchored to the data) 526 x 10⁶ events

Event selection:

- sel8 (including selections on ITS ROF border and TimeFrame border)
- |z| < 10 cm
- INEL > 0 (at least one track with |eta| < 1 contributing to the PV)

About 75% of the events pass these selections

Analysis algorithm: two-particle correlations

- Tool of choice: two-particle correlations
 - -Trigger particle: high-momentum (settable) charged hadron
 - -Associated particles: low-momentum (settable) strange particles such as K_S^0 , Λ , Ξ^- to Ω^-
- Phase space selections:
 - -trigger particles are from $2.0 < p_T < 50.0 \text{ GeV}/c$
 - -associated particles are from $0.0 < p_T < 15.0 \text{ GeV/c}$

Correlations done in vertex-Z ,p_T trigger and multiplicity bins for proper corrections + look at mult dependence

Trigger and V0 candidate selection

Trigger particle selections			
At least one hit in ITS	Yes		
Number of TPC crossed pad rows	> 70		
η	< 0.8		
DCA _{xy}	$< (0.004 + 0.013/p_T(GeV/c)) \text{ cm}$		

Table 1: Selections applied to identify trigger particles.

V ⁰ daughter tracks sel	ections	
Number of TPC crossed pad rows	> 70	
dE/dx measured in the TPC	< 4 σ (< 20 in the MC)	
Topological variables se	lections	
DCA daughters to primary vertex	> 0.1 cm	
DCA between daughter tracks of the V^0	< 1 cm	
$\cos(\theta_{\rm P})$	> 0.97(0.995)	
V ⁰ decay radius r	1.5 < r < 200 cm	
V ⁰ candidates select	ions	
$ \eta_{V^0} $	< 0.8	

Table 2: Selections applied to identify K_S^0 (A) among the reconstructed V^0 candidates.

Invariant mass distributions of K_S^0

ALICE

Parametrization for the mean and width of V0 mass distribution

• Necessary as input to the correlation function studies

 Divide the invariant mass region into three parts: LeftBg region : [-10σ, -5σ] Signal region : [-5σ, 5σ] RightBg region : [5σ, 10σ]

K_S^0 reconstruction efficiency

Trigger particle efficiency

- Below 15 GeV/c purity higher than 98%
- Up to 50 GeV/c purity higher than 90%
- Small dependence on multiplicity within 1%
- No dependence on eta

Mixed event correction

Same-event correlation

Mixed-event correlation

Acceptance-corrected function

$$C(\Delta \eta, \Delta \varphi) = \alpha \frac{C_{SE}(\Delta \eta, \Delta \varphi)}{C_{ME}(\Delta \eta, \Delta \varphi)} -$$

C: corrected correlation function C_{SE} : same-event correlation function C_{ME} : mixed-event correlation function α : factor such that $C_{ME}(0,0) = 1$

Background subtraction

Near-side, away-side and underlying event yield extraction

Systematic uncertainties (MB)

- Dominant sources : UE Subtraction & TPC PID & topological selections
- There is no significant dependence on pt, trigg and multiplicity

MC closure test

The 10th China LHC Physics Conference

Corrected near-side, away-side and underlying event spectra

• The near-side and away-side spectra are harder than the underlying event ones, in all multiplicity classes and pt,trigg intervals

Corrected spectra as a function of the trigger particle momentum

- For NS and AS spectra, the yields increase and the spectra become harder with increasing pt,trigg
- Little to no pt, trigg dependence for the UE spectra as expected

Corrected yields – Multiplicity dependence

Away-side

 $2 < p_{T,trigg} < 4 \text{ GeV/c}$

UE

Near-side

The UE spectra show a larger dependence on the multiplicity than the NS and AS spectra

Corrected yields – Multiplicity dependence

Away-side

UE

The multiplicity dependence of NS and AS spectra becomes smaller with increasing pt, trigg

- Underlying event yields increase with multiplicity
- Near-side and Away-side yields show slight dependence on multiplicity

Summary

• Parameteraction for strangeness particles mass

• Corretions

- Detector acceptance correction
- Single particle efficiency
- Background subtraction

• Preliminary results

- The Underlying event spectra show a larger dependence on the multiplicity than the Near-side and Away-side spectra
- The multiplicity dependence of the Near-side and Away-side spectra becomes weaker with increasing p_T^{trigg} while Underlying event spectra does not depend on p_T^{trigg}

Thank You !

The 10th China LHC Physics Conference

Backup

MC closure test: trigger particles versus momentum

MC closure test: associated particles vs momentum

MC closure test

Corrected yields – Multiplicity dependence

Away-side

 $10 < p_{T,trigg} < 50 \text{ GeV/}c$

UE

Near-side

• The multiplicity dependence of NS and AS spectra becomes smaller with increasing pt, trigg

Corrected yields – Multiplicity dependence

Away-side

 $10 < p_{T,trigg} < 50 \text{ GeV/c}$

UE

Probability density

Ratio to 0-100%

Probability density Probability density 10⁵ 10⁴ 10^{4} **ALICE Preliminary ALICE Preliminary** ALICE Preliminary 10⁴ pp \sqrt{s} = 13.6 TeV, h–K⁰_s correlation pp \sqrt{s} = 13.6 TeV, h–K⁰_S correlation pp \sqrt{s} = 13.6 TeV, h–K⁰_S correlation 10^{3} 10^{3} 10^{3} $6 < p_{\tau}^{\text{trigg}} < 10 \text{ GeV}/c, |\eta^{\text{trigg}}| < 0.8, |\eta^{\text{K}_{\text{S}}^{0}}| < 0.8$ $6 < p_{\tau}^{\text{trigg}} < 10 \text{ GeV}/c, |\eta^{\text{trigg}}| < 0.8, |\eta^{\text{K}_{\text{S}}^{0}}| < 0.8$ $6 < p_{\tau}^{\text{trigg}} < 10 \text{ GeV}/c, |\eta^{\text{trigg}}| < 0.8, |\eta^{K_{S}^{0}}| < 0.8$ Underlying event: $|\Delta \eta| < 1.1$, $-\pi/2 < |\Delta \phi| < 3/2\pi$ 10^{2} Near-side: $|\Delta \eta| < 1.1$, $|\Delta \phi| < \pi/2$ Away-side: $|\Delta \eta| < 1.1$, $\pi/2 < |\Delta \phi| < 3/2\pi$ 10^{2} 10² 10 10 10- 10^{-} 10 10^{-2} 10^{-2} 10^{-2} FT0M Multiplicity Percentile **FT0M Multiplicity Percentile FT0M Multiplicity Percentile** 10^{-3} 0-100% (x2⁸) 0-1% (x2⁶) \bigcirc 0–100% (x2⁸) \blacksquare 0–1% (x2⁶) 1–10% (x2⁵) \bigcirc 0–100% (x2⁸) \blacksquare 0–1% (x2⁶) \blacksquare 1–10% (x2⁵) 1–10% (x2⁵) 10⁻³ ⊧ 10^{-3} 10^{-4} 10–20% (x2⁴) 20–30% (x2³) 30–40% (x2²) 10-20% (x2⁴) 20-30% (x2³) 30-40% (x2²) 10–20% (x2⁴) 20–30% (x2³) 30–40% (x2²) 10^{-5} 40–50% (x2) 50–70% 40–50% (x2) 50–70% 40–50% (x2) 50–70% 10⁻⁴ 10^{-4} Ratio to 0-100% Ratio to 0-100% 8 8 6 2 6 8 10 6 10 10 0 p_{τ} (GeV/c) p_{τ} (GeV/c) $p_{_{\rm T}}$ (GeV/c) LI-PREL-58164 ALI-PREL-581624 ALI-PREL-581633

The multiplicity dependence of NS and AS spectra becomes smaller with increasing pt, trigg •

	Chi2/NDF Near- side	Chi2/NDF Near- side (no 70-100%)	Chi2/NDF Away- side
2 < pt,trigg < 4 GeV/c	21/7 (p = 0.004)	8.4/7 (p = 0.2)	6.6/7 < 1
4 < pt,trigg < 6 GeV/c	10/7 (p = 0.19)	3/7 < 1	1.8/7 < 1
6 < pt,trigg < 10 GeV/c	12/7 (p = 0.10)	2.8/7 < 1	0.45/7 < 1
10 < pt,trigg < 50 GeV/c	15/7 (p = 0.036)	1.5/6 < 1	1.4/7 < 1

Chi2/NDF Near-side	Chi2/NDF Near-side (no 70-100%)	Chi2/NDF Away-side
21/7 (p = 0.004)	8.4/7 (p = 0.2)	6.6/7 < 1
10/7 (p = 0.19)	3/7 < 1	1.8/7 < 1
12/7 (p = 0.10)	2.8/7 < 1	0.45/7 < 1
15/7 (p = 0.036)	1.5/6 < 1	1.4/7 < 1
	Chi2/NDF Near-side 21/7 (p = 0.004) 10/7 (p = 0.19) 12/7 (p = 0.10) 15/7 (p = 0.036)	Chi2/NDF Near-side (no 70-100%)Chi2/NDF Near-side (no 70-100%) $21/7 (p = 0.004)$ $8.4/7 (p = 0.2)$ $10/7 (p = 0.19)$ $3/7 < 1$ $12/7 (p = 0.10)$ $2.8/7 < 1$ $15/7 (p = 0.036)$ $1.5/6 < 1$

Monte Carlo studies

- PYTHIA
 - -First objective: color ropes should reproduce the strangeness enhancement versus multiplicity
 - -Second objective: Color string shoving should cause a near-side, long-range ridge in 2pc studies
- Complementary effort in this analysis: quantify these effects in near-side, away-side and UE systematically so that this can then be readily compared to the final measurement

Monte Carlo studies: implementation details

- Different configurations tested, approximately 1010 events generated each:
 - -PYTHIA Monash 2013 standard setting
 - -PYTHIA with Color Ropes: prescription obtained from Christian Bierlich -PYTHIA with String Shoving: prescription obtained from Christian Bierlich
- Analysis done at pure MC level
 - -Same-event and mixed-event correlation functions done as in data
 - -Includes multiplicity-differential analysis all the way (also for event mixing), but vertex-Z differentiation unnecessary in MC
 - -Currently in development and being cross-checked: event mixing compared to $dN/d\eta$ distribution convolution for trigger and associated: eventually get rid of event mixing, less CPU

Example two-particle correlation plots: h- Λ

Near-side ridge visible in the shoving mode

Example two-particle correlation plots

- Correlation functions very well populated for V0s
- Much more statistics-demanding for multi-strange baryons
- For comparing to Run 3 data analysis and to ensure MC modeling isn't a bottleneck, we may need more than 10¹⁰ events
 - -MC LEGO trains restricted to 2x10⁹ per train due to Int_t counting
 - -Hyperloop on-the-fly MC probably a solution

Example: yields as a function of associated p_T

- Extraction in multiplicity bins corresponding to forward charged-particle counters
- Note: Use of multiplicities instead of percentiles: further plots will be done vs midrapidity $\langle dN_{ch}/d\eta\rangle$

Particle ratios to π as a function of multiplicity: Monash versus Ropes

- Significant dynamical difference whenever color ropes are enabled
- Sizable impact not only in underlying event, but also in near and away sides

Particle ratios to K_S^0 as a function of multiplicity: Monash versus Ropes

- Ratio to K_S^0 calculated as a backup plan in case h- π analysis does not converge with bayesian PID, etc
- Physical conclusion is still rather similar: effect of ropes is very visible!
 - Note: first data point in ratio to pions dominates scale

Strangeness collectivity due to string shoving in PYTHIA

- Analysis method: project 2D correlation function using $|\Delta \phi| < \pi/2$ (select near-side+long-range)
- String shoving produces visible near-side longrange ridge, as expected
- Full characterization of momentum, multiplicity and species dependence ongoing
 - Might even require more than 1010 events for very rare particles such as Ω
 - Showcases also why this is a Run 3 analysis!

MC studies

- UE yields increase with multiplicity and do not show any significant dependence on pttrigg
- **NS and AS** yields per trigger particle **increase with pttrigg** (partially because low-pt trigg particle are not associated with jet production)
- **NS shows a hint of increase with multiplicity**, AS shows no dependence on multiplicity (to be quantified)

Particle ratios to π as a function of multiplicity: Λ

Strangeness enhancement present only in the ropes configuration in all regions

Trigger particle QA

K0 QA

Systematic uncertainties

- PV position acceptance < 8 cm (varied from 10)
- Track quality of the trigger particle > 90 TPC crossed rows (varied from 70)
- Track quality of K0s daughter particles > 90 TPC crossed rows (varied from 70)
- DCA_xy of the trigger particle
- Topological variations of K0s (looser and tighter, varied all at once)
- Signal extraction window of the K0s candidates: 4σ and 6σ
- DeltaEta : 1.1->1.05
- UE definition and subtraction
- Material budget uncertainty inherited from Run 2
- Barlow criterion not yet used
 - To be used in future studies to possibly reduce uncertainties
- MB uncertainty used for all multiplicity classes
 - Motivated by systematic evaluated in mult. bins:
 - Very similar at low p_T , only more erratic at high p_T (stat fluctuations)

V^0 daughter tracks selections				
dE/dx measured in the TPC	$3\sigma - 5\sigma$			
Topological variables selections				
DCA daughters to primary vertex	0.06 - 0.14 cm			
DCA between daughter tracks of the V^0	0.8 – 1.2 cm			
$\cos(\theta_{\rm P})$	0.965 - 0.98			
Minimum V^0 decay radius r	0.5 - 0.9 cm			

Systematic Uncertainty - MB

MB

14

MB

Systematic Uncertainty - MB

Apass6 Check

Apass6 Check----Corrected Spectrum

