Recent results on quarkonia elliptic flow with ALICE

Liuyao Zhang (张留耀) for the ALICE Collaboration

Nov.16, 2024

CLHCP2024 (Qingdao)

FUDAN University

Why to study quarkonia?

Quarkonia: bound state of 2 heavy quarks $(c\bar{c}, bb)$

- \checkmark Quarkonia produced in the initial hard partonic scattering with a large Q^2 . \rightarrow cc production can be computed via pQCD calculations; \rightarrow evolution of the pair into the physical quarkonium state is non-perturbative;
- \checkmark Experience the entire evolution of the medium;
- ✓ **Dissociated** while going through QGP due to Debye screening. \rightarrow suppression of quarkonia is a signature of QGP;

T. Matsui, H. Satz, PLB178(1986) 416

 \checkmark **Regeneration**: the large abundance of large c and \bar{c} quarks increases their probability to form charmonia, particularly at LHC energies;

Andronic et al, Nucl. Phys. A772: 167-199, 2006)

R.Thews et al, Phys. Rev. C63(2001) 054905

P.Braun-Munzinger, J. Stachel, Phys. Lett. B490 (2000) 196

How to assess to elliptic flow?

- ❑ To probe early time:
	- o The dense nuclear overlap is **ellipsoid** in non-central collisions at the beginning of HIC.
	- o **Spatial** anisotropy → **momentum** anisotropy (Pressure gradients is largest in shortest direction);
	- \circ Elliptic flow (v_2) is defined by the 2nd coefficient of Fourier expansion.
- ➢ event plane method: reconstruct event plane
- ➢ two-particle correlations:

$$
\frac{dN^{pairs}}{d\Delta\phi} \propto (1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n\Delta\phi))
$$

➢ multi-particle correlations (cumulants):

......

Why elliptic flow?

$$
E\frac{d^3N}{d^3p} = \frac{d^2N}{2\pi p_T dp_T dy} \bigg\{ 1 + 2 \sum_{n=1}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right] \bigg\}, \quad v_n = \big\langle \cos\left[n(\phi - \Psi_n)\right] \big\rangle
$$

Quarkonia :

-
- \checkmark the initial spatial energy density in the nuclear collision region;
	-

Ideal probe to explore two factors:

 \checkmark the degree of thermalization of charm;

Quarkonia v_2 : ideal probe

A Large Ion Collider Experiment (ALICE)

Inner Tracking System (ITS):

Tracking, vertex reconstruction, multiplicity estimation (pp, p–Pb)

Time Projection Chamber (TPC):

Vertex reconstruction, PID, tracking

Central barrel $(y/< 0.9)$: $J/\psi, \psi(nS) \rightarrow e^+e^-$

Triggering, centrality estimation background rejection

Distinction between J/ψ prompt (produced at primary vertex) and non-prompt (b-hadron decays) Int. J. Mod. Phys. A 29, No. 24 (2014) 1430044

 $e⁺$

e

−

$VO (A and C)$:

+

−

Muon arm (2.5 < *y* < 4.0): Forward tracking and triggering of muons

 γ (nS), J/ψ,ψ(nS) $\rightarrow \mu^+ \mu^-$

 μ

 μ

Run 2

J/ψ extraction

II JHEP 10 (2020) 141

$$
\frac{30-50\%}{30-50\%}
$$
\n
$$
\frac{1}{\frac{1}{\frac{1}{2}}}
$$
\n
$$
\frac{30-50\%}{30-50\%}
$$
\n
$$
\frac{1}{\frac{1}{2}} \times \frac{1}{\frac{1}{2}} = \frac{10^3}{10^3}
$$
\n
$$
\frac{1}{\frac{1}{2}} \times \frac{1}{\frac{1}{2}} = \frac{1}{\
$$

$$
{\ell\ell})\left|v{\mathrm{n}}^{\mathrm{J}/\Psi}+\left[1-\alpha(m_{\ell\ell})\right]v_{\mathrm{n}}^{\mathrm{bkg}}(m_{\ell\ell})\right|
$$

Elliptic flow in Pb–Pb collisions

\triangleright J/ ψ :

- $\check{\nu}_T$ < 3 GeV/*c*: $v_2(Y(1S)) \le v_2(J/\psi) < v_2(D)$ a mass ordering can be observed.
- \checkmark 3 < p_T < 6 GeV/*c*: $v_2(J/\psi) < v_2(D) \sim v_2(\pi)$ \rightarrow charm quark thermalization?
- \mathcal{V} $p_T > 6$ GeV/*c*: $v_2(J/\psi) \sim v_2(D) \sim v_2(\pi)$ similar path-length dependence of the energy loss?
- \triangleright $Y(1S)$: v_2 compatible with **zero**;
	- \Box JHEP 09(2018) 006
	- **D** PLB 813 (2021) 136054
	- \Box JHEP 10(2020)141
	- **PRL** 126, 162001(2021)
	- **D** PRL 123, 192301(2019)

ALI-PUB-352028

ALI-PUB-500427

Elliptic flow in Pb–Pb collisions

Phys. Rev. Lett. **128**, 162301(2022) **LEXT 10 (2020) 141**

- \triangleright J/ ψ ν ₂ described well by a recombination model which is based on:
	- \checkmark charm quark transported through the QGP using Langevin;
	- \checkmark space-momentum correlations of charm quarks in expanding fireball (equilibrium);

 $p_T > 3$ GeV/*c*: J/ $\psi v_2 > 0$ with similar amplitude as measured in semicentral Pb–Pb collisions;

> **D** Phys. Lett. B 780 (2018) 7-20 **JHEP** 10 (2020) 141

Elliptic flow in p–Pb collisions

- J/ ψ ν ₂ are measured separately by:
- p–Pb: two particle correlation (J/ψ-charged);
- Pb–Pb: scalar product;

 $\triangleright p_T < 3$ GeV/*c*: consistent with zero;

- \triangleright No collective behavior observed for the J/ ψ elliptic flow in high multiplicity pp collisions at the LHC, within uncertainties;
- \triangleright First J/ ψ elliptic flow measurement in pp collisions at LHC at forward rapidity;

Elliptic flow in pp collisions

 $V_{2,J\psi}$

Elliptic flow in Pb–Pb, p–Pb, pp collisions

A clear hierarchy of $J/\psi \nu_2$ from **Pb–Pb**, **p–Pb** to high-multiplicity pp collisions can be observed.

So far in Run 3 compared to Run 1 and 2 : ∼ x 800 more pp, ∼ x 30 more Pb−Pb min. bias collisions

A Large Ion Collider Experiment (ALICE)

Max rate (PbPb): $1kHz \rightarrow 50 kHz$

Continuous readout \rightarrow More statistics

Quarkonia reconstruction in ALICE

ALI-PERF-549844

-
-
- Nov.16, 2024 CLHCP2024 (Qingdao)—Liuyao Zhang (张留耀) **14**

J/ψ elliptic flow in Run 3

ALI-PREL-577735

 \triangleright Amplitude of J/ ψ ν_2 is consistent between Run 2 and Run 3; \triangleright The precision for Run3 measurement is improved at low p_T ;

Summary

 \triangleright A clear hierarchy of J/ ψ elliptic flow from Pb–Pb, p–Pb to high-multiplicity pp is observed; \triangleright Run 3 data taking ongoing with a huge boost in recorded luminosity – Stay tuned;

 \triangleright More precise measurements will be possible in pp, and Pb–Pb in Run 3;

ALI-PREL-577735

Thanks for your attention!

backup

Hot nuclear matter effect (QGP)

- *Suppression due to color-screening*
- *Enhancement due to (re)generation*
- *Suppression due to b-quark energy loss*

QGP melting

(Re)generation

ITS

3. V_2 {ee-h, sub} (M_{uu}) = $\frac{Sig}{Sig+Bkg}V_2{J/\psi}$, sub} + $\frac{Bbk}{Sig+Bk}$

$$
\frac{Bbk}{Sig+Bbkg}V_2\{bkg\}(M_{uu})
$$

D Phys. Lett. B 780 (2018) 7-20

J/ v2 signal subtraction