The 10th China LHC Physics Conference (CLHCP2024)

Exploring nuclear structure with multiparticle azimuthal correlations at the LHC

Zhiyong Lu China Institute of Atomic Energy (CIAE)

Nuclear structure at low energies

Atomic nuclei have rich phenomenology. Rooted in the strong nuclear force. Nuclear structure is a very old field. Many different approaches.

Modern ab-initio methods have successfully described light nuclei with A \leq 50

For heavy nuclei, computational complexity rapidly arises due to the increasing number of nucleons

Nuclear structure at high energies

Nuclear structure parameter

nucleon density described by **Woods-Saxon profile** $\rho(r, \theta, \phi) = \frac{\rho_0}{1 + e^{[r - R(\theta, \phi)]/a_0}},$ $R(\theta, \phi) = R_0(1 + \beta_2[\cos\gamma Y_{2,0} + \sin\gamma Y_{2,2}] + \beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m} + \beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m})$ $\beta_2: \text{ quadrupole deformation parameter}$ $a_0: \text{ nuclear diffuseness parameter}$ $\gamma: \text{ triaxiality parameter}$

5

Experimental tool: anisotropic flow

Nuclear structure at HIC

Many nuclear structure studies on GeV energies have been inplemented in RHIC-STAR

J. Jia, Phys. Rev. Lett. 131 no. 2, (2023) 022301
J. Jia, Chin. Phys. Lett. 40 no. 4, (2023) 042501
S. Zhao, Phys. Lett. B 839 (2023) 137838
etc...

STAR, arxiv: 2401.06625 (accepted by nature) talked by Chunjian, Wednesday afternoon

The intersections between STAR data and the state-of-art IPGlasma+MUSIC hydrodynamic model constrain the ²³⁸U nucleus as: $\beta_2 = 0.297 \pm 0.013$, $\gamma = 8.6^{\circ} \pm 4.8^{\circ}$

Nuclear structure at HIC

129**Xe**

129Xe

HC

 $\beta_2=0.2, \gamma=30^{\circ}$

Zhiyong Lu(CIAE)

J. Jia, Phys.Rev.C 105 (2022) 4, 044905

Study the effect of nuclear structure on azimuthal distribution of finalstate particles in ¹²⁹Xe–¹²⁹Xe, compared to ²⁰⁹Pb–²⁰⁹Pb (no deformation)

X-axis: centrality

Zhiyong Lu(CIAE)

Centrality: a percentage of the hadronic cross section corresponding to a particle multiplicity, directly related to the impact parameter

0% centrality: almost fully overlap 90% centrality: peripheral collisions

Initial shape is strongly related to centrality The most central collisions can project the shape of colliding nucleus

Results: v_2

 $\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$ n=2 with two or four-particle correlations

Results: v_2 mean and flucutations

ALICE, arxiv: 2409.04343

Zhiyong Lu(CIAE)

- $\langle v_2 \rangle$: similar trends with $v_2 \{2\}$ and $v_2{4}$
- σ_{v_2} : Xe–Xe larger than Pb–Pb in 0-60% centrality (larger flow flucutation in smaller system)
- σ_{v_2} model with $\beta_2 = 0$ is smaller in 0-15% centrality

Need further confirmation from model

60

Results: $v_3{2}, v_4{2}$

Zhiyong Lu(CIAE)

 $\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n) \quad n=3,4 \text{ with two particle correlation}$

ALICE, arxiv: 2409.04343

 v₄{2} is suppressed by nuclear diffueseness a₀ in midcentral collisions

Nov-16-2024

12

Results: V₄ component

Zhiyong Lu(CIAE) V_4 V_{4}^{L} $|V_{4}^{NL}| = v_{4,22}$ ε_n : initial anisotropy v_4 stems from ε_4 (linear component) and ε_2 (nonlinear component) $v_{4,22}$ (Xe–Xe/Pb–Pb) decreases with centrality, v_4^{L} (Xe–Xe/Pb–Pb) has milder centrality dependence $v_{4,22}$ shows sensitivities to β_2 and a_0 , while $v_4^{\rm L}$ does not. $v_{4,22} \propto \varepsilon_2 \propto \beta_2$ $v_4^{ m L} \propto \varepsilon_4$ For v_4 {2}, Central: v_4^{L} dominate, insensitive to β_2 and a_0 Midcentral: compatible $v_{4,22}$, sensitive 13

Results: nonlinear coefficient and correlation

Nov-16-2024

 $\chi_{4,22}: \text{ dimensionless value} \\ \text{quantifying the contribution} \\ \text{from } \varepsilon_2 \\ \rho_{4,22}: \text{ correlation between} \\ \text{order } n = 4 \text{ and } n = 2 \\ \rho_{4,22} \approx \cos\theta \quad \bigvee_4 \\ V_4 \\ V_$

Zhiyong Lu(CIAE)

- χ_{422} seems independent of β_2 and a_0 \Rightarrow The sensitives of $|V_4^{\text{NL}}| = v_{4,22}$ are largerly from $(V_2)^2$
 - $\rho_{4,22}$: enhanced by deformation in central collisions
 - $\rho_{4,22} \approx v_{4,22}/v_4\{2\}$: sensitivity to a_0 is cancelled by the ratio

Results: theory fitness

Zhiyong Lu(CIAE)

IPGlasma+MUSIC+UrQMD hydrodynamic model

- $\beta_2 = 0.207$ generally provide better descriptions, except $v_{4,22}$ (large uncertainties in central collision)
- $a_0 = 0.492$ demonstrate better agreement, except $v_{4,22}$, $\rho_{4,22}$ and NSC(3,2)
- $v_2\{2\}$ has better discrimination on β_2 , while $v_2\{4\}, \langle v_2 \rangle$ have better discrimination on a_0 .

$$\beta_2 = 0.2, \gamma = 30^{\circ}$$

- Discussion on previous slides missed the contribution of γ , which represents the imbalance of the radius
- According to the last AMPT simulations, none of the "standard" flow observables are sensitive to y
- New observables, i.e., $v_n p_T$ correlation can probe γ

ALICE, Phys. Lett. B834 (2022) 137393

- A systematic study on the centrality dependence of various flow observables in Xe–Xe and Pb–Pb collisions
- Several flow observables exhibit pronounced differences between Xe–Xe and Pb–Pb, anticipated from the quadrupole deformation of ²⁰⁹Xe
- IP-Glasma+MUSIC+UrQMD model with $a_0 = 0.492$, $\beta_2 = 0.207$ is favored by the presented measurements
- Experimental measurements at the LHC enable a novel tool to probe the nuclear structure, complementary to the low-energy studies

Thanks for your attention! 17

Observables

Zhiyong Lu(CIAE)

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{\mathrm{n}=1}^{\infty} \mathrm{v_n} \cos \mathrm{n}(\varphi - \Psi_\mathrm{n})$$

Experimentally use multi-particle correlation $\cos(n_1\varphi_1+n_2\varphi_2+...+n_m\varphi_m)$ because event plane Ψ_n estimation contains additional uncertainties

- flow coefficients with 2- and 4-particle: $v_n\{2\}(n = 2, 3, 4), v_2\{4\}$
- mean elliptic flow: $\langle v_2 \rangle = \sqrt{(v_2 \{2\}^2 + v_2 \{4\}^2)/2}$
- elliptic flow fluctuations: $\sigma_{v_2} = \sqrt{(v_2 \{2\}^2 v_2 \{4\}^2)/2}$
- nonlinear flow modes ($v_{4,22}, \chi_{4,22}, \rho_{4,22}$)
- normalized symmetric cumulants (NSC(3,2))

Y. Zhou, Phys.Rev.C 93 (2016) 3, 034909

- R. S. Bhalerao et al., Phys. Lett. B742 (2015) 94–98
- A. Bilandzic et al., Phys.Rev.C 89 (2014) 6, 064904

Measured for the first time in Xe–Xe collisions Compared to results in Pb–Pb collisions

The first systematic study on nuclear structure with various flow observables at the LHC energies!

Final state cancellation

- the cancellation can be seen in the PCC correlation between the initial state and final state
- Basically, the two systems have the same linear correlation between initial and final, which suggests the same final state effects.

$$Q_n = \frac{\langle v_n \varepsilon_n \cos n (\psi_n - \phi_n) \rangle}{\sqrt{\langle v_n^2 \rangle \langle \varepsilon_n^2 \rangle}}$$

Results: normalized symmetric cumulant

NSC(3,2): the correlation between v_3^2 and v_2^2 (positive: correlated, zero: uncorrelated, negative: anticorrelated)

- anticorrelation between v_3 and v_2 in Xe–Xe is larger than Pb–Pb
- insensitive neither to β_2 nor a_0
- model deviates from the data in central region