

Study of jet quenching effects through hadron-jet correlations with ALICE at the LHC

 $\Delta \varphi$

PRL 133 (2024) 022301, PRC 110 (2024) 014906, JHEP 05 (2024) 229

Yongzhen HOU (侯永珍)

IOPP, Central China Normal University

16 November 2024

The 10th China LHC Physics Conference (CLHCP2024)

Hadron-jet correlations in high multiplicity pp collisions at 13 TeV (Run 2)

The 10th China LHC Physics Conference (CLHCP2024)

JHEP 05 (2024) 229

Hadron-jet correlations in pp and central Pb–Pb collisions at 5.02 TeV (Run 2)

PRL 133 (2024) 022301, PRC 110 (2024) 014906

Jet Probes

Jets are defined as collimated sprays of particles originating from initial hard scattered partons

Jets are defined as collimated sprays of particles originating from initial hard scattered partons

Jets in pp collisions \rightarrow study the strong force

- Well described by pQCD calculations
- Investigate the parton splitting functions in vacuum
- Serves as a reference for jet measurements in heavy-ion collisions to study jet quenching
- Searching for QGP droplet formation in small collision systems

without QGP Jet

Jets are defined as collimated sprays of particles originating from initial hard scattered partons

Jets in pp collisions \rightarrow study the strong force

- Well described by pQCD calculations
- Investigate the parton splitting functions in vacuum • Serves as a reference for jet measurements in heavy-ion collisions to study
- jet quenching
- Searching for QGP droplet formation in small collision systems

Jets in heavy-ion collisions \rightarrow study the transport properties of the QGP

- Partons interact with QGP and lose energy through medium-induced gluon radiations (inelastic) and collisions (elastic) with medium constituents
 - $Jet(E) \rightarrow Jet(E' \Delta E) + soft particles(\Delta E)$

Jet quenching observables

Study structure of QGP by understanding jet modification from medium interaction (quenching)

- Several types of jet observables
 - Jet reconstruction and declustering \rightarrow substructure (r_{g}, θ_{g}) modification
 - Jet yields and constituents \rightarrow jet suppression and energy redistribution (R_{AA} , I_{AA})
 - Angular correlation \rightarrow jet deflection ($\Delta \varphi$)

Substructure modification

Energy redistribution

The 10th China LHC Physics Conference (CLHCP2024)

Deflection

Jet quenching observables

Study structure of QGP by understanding jet modification from medium interaction (quenching)

- Several types of jet observables
 - Jet reconstruction and declustering \rightarrow substructure (r_{g}, θ_{g}) modification
 - Jet yields and constituents \rightarrow jet suppression and energy redistribution (R_{AA}, I_{AA})
 - Angular correlation \rightarrow jet deflection ($\Delta \varphi$)
 - → Semi-inclusive measurements of a jet recoiling from a trigger (e.g. y-jet, Z-jet, or **hadron-jet**)

Apply statistical, data driven-approach for background yield suppression

- insight into QGP properties

• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low p_T , large R jets **Opening angle (** $\Delta \phi$ **)** measurements of the recoil jet relative to the trigger axis provide additional

- insight into QGP properties \rightarrow broadening transverse to its initial direction

• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low $p_{\rm T}$, large R jets **Opening angle (** $\Delta \phi$ **)** measurements of the recoil jet relative to the trigger axis provide additional

- Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low $p_{\rm T}$, large R jets **Opening angle (** $\Delta \phi$ **)** measurements of the recoil jet relative to the trigger axis provide additional insight into QGP properties \rightarrow broadening transverse to its initial direction In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]

- 1. L Chen, Phys. Lett. B 773 (2017) 672
- 2. Phys.Lett.B 763 (2016) 208-212
- 3. JHEP 01 (2019) 172

The 10th China LHC Physics Conference (CLHCP2024)

- insight into QGP properties \rightarrow broadening transverse to its initial direction
 - In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]
 - In medium: additional broadening due to scatterings with medium constituents^[1,2]

- 1. L Chen, Phys. Lett. B 773 (2017) 672
- 2. Phys.Lett.B 763 (2016) 208-212
- 3. JHEP 01 (2019) 172

The 10th China LHC Physics Conference (CLHCP2024)

• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low $p_{\rm T}$, large R jets **Opening angle (** $\Delta \phi$ **)** measurements of the recoil jet relative to the trigger axis provide additional

Deflection

- Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low $p_{\rm T}$, large R jets **Opening angle (** $\Delta \phi$ **)** measurements of the recoil jet relative to the trigger axis provide additional insight into QGP properties \rightarrow broadening transverse to its initial direction In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2] In medium: additional broadening due to scatterings with medium constituents^[1,2] Deflection • Transverse broadening due to **multiple soft scatterings** in the QGP

- - Related to transport coefficient $\hat{q} \sim \langle k_{\perp}^2 \rangle / L \sim \langle \Delta \varphi^2 \rangle / L$

- 1. L Chen, Phys. Lett. B 773 (2017) 672
- 2. Phys.Lett.B 763 (2016) 208-212
- 3. JHEP 01 (2019) 172

- Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of combinatorial background by varying the trigger track intervals \rightarrow access low p_T , large R jets • Opening angle ($\Delta \varphi$) measurements of the recoil jet relative to the trigger axis provide additional insight into QGP properties \rightarrow broadening transverse to its initial direction In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2] In medium: additional broadening due to scatterings with medium constituents^[1,2] Deflectior

- - Transverse broadening due to **multiple soft scatterings** in the QGP
 - Related to transport coefficient $\hat{q} \sim \langle k_{\perp}^2 \rangle / L \sim \langle \Delta \varphi^2 \rangle / L$
 - Large-angle deflection ($\Delta \varphi < \pi$) of hard partons off quasi-particle^[3]?

The 10th China LHC Physics Conference (CLHCP2024)

 $k_{\rm T}$

- insight into QGP properties \rightarrow broadening transverse to its initial direction

The 10th China LHC Physics Conference (CLHCP2024)

• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of

combinatorial background by varying the trigger track intervals \rightarrow access low $p_{\rm T}$, large R jets

• Opening angle ($\Delta \varphi$) measurements of the recoil jet relative to the trigger axis provide additional

QGP-like behavior in small collision systems

systems: collectivity, strangeness enhancement ...

• Effects considered as signatures of QGP formation in heavy-ion collisions are observed in small

QGP-like behavior in small collision systems

- systems: collectivity, strangeness enhancement ...
 - However, no jet quenching observed so far

→ What is the limit for QGP formation?

The 10th China LHC Physics Conference (CLHCP2024)

Effects considered as signatures of QGP formation in heavy-ion collisions are observed in small

Jet measurements in ALICE (Run 2)

- V0 (V0C + V0A)
 - $-3.7 < \eta < -1.7, 2.8 < \eta < 5.1$
 - Event trigger
 - Event multiplicity, centrality determination

(18) ITS TPC 4. TRD 5. TOF 8. DCal 16, PMD 17. AD 18. ZDC

Jet measurements in ALICE (Run 2)

- V0 (V0C + V0A)
 - $-3.7 < \eta < -1.7, 2.8 < \eta < 5.1$
 - Event trigger
 - Event multiplicity, centrality determination

Charged-particle tracks and jets

- **ITS** (Inner Tracking System)
 - $|\eta| < 0.9, \ 0 < \varphi < 2\pi$
 - Primary vertex reconstruction
 - Charged particle tracking
- **TPC** (Time Projection Chamber)
 - $|\eta| < 0.9, \ 0 < \varphi < 2\pi$
 - Charged particle tracking
 - Particle identification

Jet measurements in ALICE (Run 3)

Fast Interaction Trigger (FT0C + FT0A)

New Inner Tracking System

- $|\eta| < 1.3, 0 < \varphi < 2\pi$
- New Si inner tracker
- 3 inner layers 0.36% X0 each
- 50 kHz continuous readout

Yongzhen HOU yongzhen.hou@cern.ch

Time Projection Chamber

- $|\eta| < 0.9, \ 0 < \varphi < 2\pi$
- 4 layers of GEM
- 50 kHz continuous readout

2024/11/16

ACORDE | ALICE Cosmic Rays Detector

AD ALICE Diffractive Detector

EMCal | Electromagnetic Calorimete

MPID | High Momentum Particle Identification Detector

TS-IB Inner Tracking System - Inner Barrel

ITS-OB Inner Tracking System - Outer Barrel

MFT | Muon Forward Tracker

11 PHOS / CPV | Photon Spectrometer

TPC | Time Projection Chamber

TRD | Transition Radiation Detector

ZDC Zero Degree Calorimeter

Observables

• Measure trigger-normalised yield of jets recoiling from a trigger hadron

Yongzhen HOU yongzhen.hou@cern.ch

$$dA \rightarrow h+jet+X$$

 $dp_{T,jet} d\Delta \varphi_{jet}$

p_{T,h}∈TT

Recoiling jet

Observables

- Measure trigger-normalised yield of jets recoiling from a trigger hadron $\frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{\mathrm{d}^2 N_{\text{jet}}^{\text{AA}}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\text{T,jet}} \mathrm{d}\Delta\varphi_{\text{jet}}} \bigg|_{p_{\text{T}}^{\text{trig}} \in \text{TT}} = \left(\frac{1}{\sigma^{\text{AA} \to \text{h}+X}} \cdot \frac{\mathrm{d}^2 \sigma^{\text{AA} \to \text{h}+jet+X}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\text{T,jet}} \mathrm{d}\Delta\varphi_{\text{jet}}}\right) \bigg|_{p_{\text{T,h}} \in \text{T}}}$
- Recoil jets measured in two exclusive trigger track (TT) intervals: TT signal: $p_T \in (20, 50)$ GeV/*c*, TT reference: $p_T \in (5, 7)$ GeV/*c* (except pp 13 TeV, TT_S [20,30], TT_R : [6,7])

Yongzhen HOU yongzhen.hou@cern.ch

Observables

• Measure trigger-normalised yield of jets recoiling from a trigger hadron $\frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{\mathrm{d}^2 N_{\text{jet}}^{\text{AA}}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\text{T,jet}} \mathrm{d}\Delta\varphi_{\text{jet}}} \bigg|_{p_{\text{T}}^{\text{trig}} \in \text{TT}} = \left(\frac{1}{\sigma^{\text{AA} \to \text{h}+X}} \cdot \frac{\mathrm{d}^2 \sigma^{\text{AA} \to \text{h}+\text{jet}+X}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\text{T,jet}} \mathrm{d}\Delta\varphi_{\text{jet}}}\right) \bigg|_{-}$.∈TT

- Recoil jets measured in two exclusive trigger track (TT) intervals: TT signal: $p_T \in (20, 50)$ GeV/*c*, TT reference: $p_T \in (5, 7)$ GeV/*c* (except pp 13 TeV, TT_S [20,30], TT_R : [6,7])
- trigger track intervals to remove uncorrelated combinational background

$$\Delta_{\text{recoil}} (p_{\text{T,jet}}, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \left. \frac{\mathrm{d}^3 N_{\text{jet}}}{\mathrm{d}\eta_{\text{jet}} \, \mathrm{d}p_{\text{T,jet}} \, \mathrm{d}\Delta \varphi} \right|_{p_{\text{T}}^{\text{trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot$$

- C_{Ref} : "alignment" constant extracted from data
- Allow for precise measurements down to very low $p_{\rm T}$ and large R

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

$$\left(\frac{\mathrm{d}p_{\mathrm{T,jet}} \,\mathrm{d}\Delta\varphi_{\mathrm{jet}}}{\mathrm{d}p_{\mathrm{T,jet}}}\right) \Big|_{p_{\mathrm{T,h}}}$$

• Observables defined as the difference between trigger-normalised recoil jet yields in two

 $\frac{1}{N_{\text{trig}}} \left. \frac{\mathrm{d}^3 N_{\text{jet}}}{\mathrm{d}\eta_{\text{jet}}} \, \mathrm{d}p_{\text{T,jet}} \, \mathrm{d}\Delta\varphi \right|_{p_{\text{T}}^{\text{trig}} \in \mathrm{T}}$

Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions in pp collisions

- Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions for R = 0.4 in pp collisions at 5.02, 13, 13.6 TeV
- All model calculations, except JEWEL, reproduce the ALICE data within uncertainties

_	
	_
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	-
	_
	_
L I	
00	
V/r	~)

Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions in pp collisions

- All model calculations, except JEWEL, reproduce the ALICE data within uncertainties

The 10th China LHC Physics Conference (CLHCP2024)

Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions for R = 0.4 in pp collisions at 5.02, 13, 13.6 TeV A yield suppression in the HM collisions with respect to MB events \rightarrow independent of $p_{\rm T}$

_	
	_
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	-
	_
	_
L I	
00	
V/r	~)

Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions in pp & Pb-Pb

• $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions measured **down to** $p_{\text{T}} \sim 7$ GeV/c in pp and Pb-Pb collisions Among the lowest jet measurement in Pb-Pb collisions with ALICE at the LHC!

The 10th China LHC Physics Conference (CLHCP2024)

12

$I_{\rm AA}(p_{\rm T})$ - recoil jet yield modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

- Jet yield enhancement at low $p_{\rm T}$
- \rightarrow hint of energy recovery in low $p_{\rm T}$ jets?

$I_{AA}(p_T)$ - recoil jet yield modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

- Jet yield enhancement at low $p_{\rm T}$
- \rightarrow hint of energy recovery in low $p_{\rm T}$ jets?
- Jet yield suppression at $20 < p_{T,jet} < 60 \text{ GeV}/c$ \rightarrow Jet energy loss

$I_{AA}(p_T)$ - recoil jet yield modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

- Jet yield enhancement at low $p_{\rm T}$
- \rightarrow hint of energy recovery in low $p_{\rm T}$ jets?
- Jet yield suppression at $20 < p_{T,iet} < 60 \text{ GeV}/c$
 - \rightarrow Jet energy loss
- **Rising trend** with increasing jet $p_{\rm T}$

 \rightarrow Interplay of jet quenching and jet production or hadron energy loss?

Phys.Lett.B 854 (2024) 138739

$I_{AA}(p_{T})$ compared to models

The 10th China LHC Physics Conference (CLHCP2024)

 $A_{\text{recoil}} (p_{\text{T}})_{\text{AA}}$ $I_{\rm AA}$ $\Delta_{\rm recoil} (p_{\rm T})_{\rm pt}$

JETSCAPE with Pb-Pb tune:

1903.07706, Phys.Rev.C 107 (2023) 3

Multi-stage energy loss based on MATTER (high virtuality) + LBT (low virtuality)

JEWEL: perturbative treatment to jet quenching arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD approach. medium response effects via the treatment of 'recoils'

Hybrid Model: strong (DGLAP) / weak (AdS/CFT) coupling model JHEP 02 (2022) 175, JHEP01(2019)172 With/without elastic energy loss (i.e 'Moliere' scattering) medium response via with and without wake.

$I_{AA}(p_{T})$ compared to models

The 10th China LHC Physics Conference (CLHCP2024)

 $|\Delta \varphi - \pi| < 0.6$

The **rising trend** is qualitatively described by all predictions

- **JETSCAPE largely reproduces** the I_{AA} distributions
- Hybrid Model and JEWEL predictions overestimate the suppression at high $p_{\rm T}$

Hybrid Models with wake effect and JEWEL with **recoils on** seem to catch the yield enhancement at low $p_{\rm T}$

• Medium response could be responsible for the yield enhancement

Δ_{recoil} ($\Delta \phi$) distributions in pp at 13 TeV: R = 0.4

The 10th China LHC Physics Conference (CLHCP2024)

- Suppression of back-to-back jet production
- **Broadening** of HM acoplanarity distribution with respect to MB
 - The effect is stronger for low $p_{\rm T}$ jets
 - Resembles jet quenching effects?

Δ_{recoil} ($\Delta \phi$) distributions in pp at 13 TeV: R = 0.4

The 10th China LHC Physics Conference (CLHCP2024)

- Suppression of back-to-back jet production
- **Broadening** of HM acoplanarity distribution with respect to MB
 - The effect is stronger for low $p_{\rm T}$ jets
 - Resembles jet quenching effects?
- Quantitative comparison to PYTHIA 8 Monash (does not account for jet quenching effects) shows similar suppression pattern
 - Indicate the effect is not from the jetmedium interaction
 - Use PYTHIA to explore the origin of the effect \rightarrow HM event selection bias

$I_{\rm AA}(\Delta \varphi)$ - recoil jet angular modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

• Significant broadening for $p_{\rm T} \in [10, 20] \text{ GeV}/c$

$I_{AA}(\Delta \varphi)$ - recoil jet angular modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

- Significant broadening for $p_{\rm T} \in [10, 20] \text{ GeV}/c$
- No broadening or suppression for $p_{\rm T} \in [20, 30] \; {\rm GeV}/c$

$I_{AA}(\Delta \varphi)$ - recoil jet angular modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

- Significant broadening for $p_{\rm T} \in [10, 20] \text{ GeV}/c$
- No broadening or suppression for $p_{\rm T} \in [20, 30] \text{ GeV}/c$
- Jet yield suppression for $p_{\rm T} \in [30, 50] \text{ GeV}/c$

$I_{\rm AA}(\Delta \varphi)$ compared to models

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

1903.07706, Phys.Rev.C 107 (2023) 3

Multi-stage energy loss based on MATTER (high virtuality) + LBT (low virtuality)

JEWEL: perturbative treatment to jet quenching arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD approach. medium response effects via the treatment of 'recoils'

Hybrid Model: strong (DGLAP) / weak (AdS/CFT) coupling model _JHEP 02 (2022) 175, JHEP01(2019)172

With/without elastic energy loss (i.e 'Moliere' scattering) medium response via with and without wake.

pQCD@LO + Sudakov broadening:

Phys.Lett.B 773 (2017) 672

Leading order pQCD, azimuthal broadening via jet transport coefficient

$I_{\rm AA}(\Delta \varphi)$ compared to models

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

JETSCAPE and **pQCD** w/ **broadening reasonably describe** the data for jet $p_T \in [20,50]$ GeV/ $c \rightarrow$ lacking precision to resolve the difference between two \hat{q} values

- **JEWEL** (recoils-on) **describes well the** I_{AA} **in-all** p_T **bins**
- Hybrid model captures the yield
 enhancement, but no broadening
 effects are seen when including
 elastic and wake components

Summary and outlook

- Search for QGP signatures in high multiplicity pp collisions
 - Jet quenching like effects masked by generic event selection bias
- - Medium response is favored instead of Molière scattering as the cause for both effects
- First look at recoil jet spectra in Run 3

The 10th China LHC Physics Conference (CLHCP2024)

• First observation of significant low- p_T jet yield and large-angle enhancement in Pb-Pb collisions with ALICE!

• Looking forward to further studies with **Run 3** data with ALICE ~~ investigate recoil jet substructure including in Pb-Pb

BACKUP

Thanks for your listening and discussion

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

Δ_{recoil} ($\Delta \phi$) distributions in pp at 5.02 TeV: R = 0.4

- Described well by different model calculations within uncertainties

The 10th China LHC Physics Conference (CLHCP2024)

• Corrected $\Delta_{\text{recoil}}(\Delta \varphi)$ distributions for R = 0.4 in different jet p_{T} bins (10-20-30-50-100 GeV/c)

Broadening effect observed with ALICE & STAR

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

2024/11/16

21

Raw yield distributions

• Recoil jet p_T vs $\Delta \varphi$ 2-dimensional distributions in two trigger track p_T intervals

The 10th China LHC Physics Conference (CLHCP2024)

Recoil jet $p_{\rm T}$ distributions

- Recoil jet p_T distributions in two trigger track p_T intervals are then obtained from 2D projection
- **Combinational background** uncorrelated with the trigger
 - Small background contribution in pp, much larger in Pb-Pb

The 10th China LHC Physics Conference (CLHCP2024)

 $\Delta_{\text{recoil}} (p_{\text{T,jet}}, \Delta \varphi) = 0$ $N_{\rm trig} \, \mathrm{d}\eta_{\rm jet} \, \mathrm{d}p_{\rm T, jet} \, \mathrm{d}\Delta \varphi$ $N_{\rm trig} \, \mathrm{d}\eta_{\rm jet} \, \mathrm{d}p_{\rm T, jet} \, \mathrm{d}\Delta\varphi$ $p_{T}^{trig} \in TT_{Sig}$

Combinatorial background can be removed by taking the **difference** of recoil jet distributions in two TT intervals

Raw distribution in pp 13 TeV

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

PYTHIA simulation

- \rightarrow significant bias in the distribution of high- $p_{\rm T}$ recoil jets
- Broader jets are selected more in the VOC for HM events could hide the jet-medium interaction signal
 - → Jet quenching signals can be masked by effects coming from trigger

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU

• Larger enhancement in VOC resulting from the asymmetric pseudorapidity acceptance of VOA and VOC in HM events

Fully-corrected $\Delta_{\text{recoil}}(p_{\mathrm{T}})$ distributions in pp collisions

- Fully-corrected $\Delta_{\text{recoil}}(p_{\text{T}})$ distributions for R = 0.2, 0.4, and 0.5 in pp collisions
- The model calculations except JEWEL can reproduce the ALICE data within uncertainties

The 10th China LHC Physics Conference (CLHCP2024)

Data fitted with the function: $\Delta(p_{\rm T}) = p_0 \exp(-p_1 \times p_{\rm T}) + p_2 \times (p_{\rm T})^{p_3}$

PYTHIA (8.125, Monash 2013 tune): LO pQCD calculation arXiv:1404.5630

POWHEG: NLO pQCD calculation arXiv:hep-ph/0409146

JETSCAPE PP19 tune: based on PYTHIA8, with modified parton shower. arXiv:1910.05481

JEWEL vaccum: based on PYTHIA6, which has no medium related parameters (no medium) arXiv:1311.0048, https://jewel.hepforge.org/

L = 0.2, 0.4, and 0.5 in pp collisions eproduce the ALICE data within uncertainties

Fully corrected yield ratio: R = 0.2 / R = 0.4

- The jet yield ratios of inclusive and simi-inclusive for R =0.2 / 0.4
 - Agreement between inclusive jets and semi-inclusive at high $p_{\rm T}$

Fully corrected yield ratio: R = 0.2 / R = 0.4

The 10th China LHC Physics Conference (CLHCP2024)

- The jet yield ratios of inclusive and simi-inclusive for R =0.2 / 0.4
 - Agreement between inclusive jets and semi-inclusive at \bullet high $p_{\rm T}$
 - Well described by PYTHIA
 - Good agreement between Run 2 and Run 3 results \bullet
- Difference at low p_T due to **TT selection**
- Enhancement in R = 0.2 recoil jet yield at low p_T

 \rightarrow preference for more, small *R* jets w.r.t. large *R* jets to be reconstructed?

 \rightarrow bias towards LO processes suppressed when $p_{T}^{\text{jet}} < p_{T}^{\text{trig}}$?

$I_{AA}(p_T)$ - recoil jet yield modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

$$I_{AA} \equiv \frac{\Delta_{\text{recoil}} (p_{\text{T}})_{AA}}{\Delta_{\text{recoil}} (p_{\text{T}})_{\text{pp}}}$$

The **rising trend** is qualitatively described by all predictions

- **JETSCAPE largely reproduces** the I_{AA} distributions
- Hybrid Model and JEWEL predictions **overestimate the suppression** at high $p_{\rm T}$

JEWEL calculations seems to be consistent with measurements at low $p_{\rm T}$

$I_{AA}(p_T)$ - recoil jet yield modification in Pb-Pb collisions

The 10th China LHC Physics Conference (CLHCP2024)

$$I_{AA} \equiv \frac{\Delta_{\text{recoil}} (p_{\text{T}})_{AA}}{\Delta_{\text{recoil}} (p_{\text{T}})_{\text{pp}}}$$

- *R*=0.5 consistent with the unit (no suppression and enhancement)
- Little suppression captured by JEWEL (recoils on)
- Indication of intra-jet energy recovery within cone radius~0.5 for mid- $p_{\rm T}$?
- Redistribution of energy for *R*=0.5 jets more challenging for models

$I_{AA}(\Delta \varphi)$ - recoil jet angular modification in Pb-Pb collisions

$$I_{AA} \equiv \frac{\Delta_{\text{recoil}} (p_{\text{T}})_{AA}}{\Delta_{\text{recoil}} (p_{\text{T}})_{\text{pp}}}$$

- Expected that high $p_{\rm T}$ hadrons leading fragment of jet originating from QGP surface ('surface bias') • $p_{\rm T}^{\rm jet} \sim p_{\rm T}^{\rm trig}$: **suppression** - surface bias picture holds
- $p_{T}^{\text{jet}} \gg p_{T}^{\text{trig}}$: trigger hadron may not be leading fragment or from higher order process - interplay between jet and hadron
- New insight into interplay between hadron and jet suppression

Recoil jet $\Delta \phi$ distributions

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU

Δ_{recoil} ($\Delta \phi$) distributions in pp & Pb-Pb

The 10th China LHC Physics Conference (CLHCP2024)

pp **Pb-Pb**

• Significant acoplanarity **broadening** for R = 0.4 and R = 0.5 at low $p_{\rm T}$ interval

- medium response clustered inside a jet scale with R^2
- with medium response rather than Molière scattering

The 10th China LHC Physics Conference (CLHCP2024)

Yongzhen HOU yongzhen.hou@cern.ch

• Transition to broadening from R = 0.2 to R = 0.4 for $p_T \in [10,20]$ GeV/ $c \rightarrow$ soft particles from the

• All features of distribution reproduced by JEWEL with recoils on \rightarrow observed broadening consistent

