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Outline

• Introduction to Jet Tagging with Deep Learning

• Overview of Transformer Models

• Architecture of the More Interaction Particle Transformer (MIParT)

• Results and Discussion

• Conclusion
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Jet Tagging

• Jets are collimated sprays of particles 
produced in high-energy collisions. 

• Identifying the particle that initiated 
the jet is complex and challenging.

• Jet Tagging is critical for revealing 
fundamental physical processes and 
discovering new particles.
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Fig from 2202.03772

https://arxiv.org/abs/2202.03772


History of Jet Tagging with Deep Learning
• DNN 
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Fig from 1501.05968 • CNN

• RNN: Recurrent Neural Networks 

Fig from 1612.01551

Fig from 1607.08633

• RvNN: Recursive Neural Networks
Fig from 1711.02633

https://arxiv.org/pdf/1501.05968
https://arxiv.org/pdf/1612.01551
https://arxiv.org/pdf/1607.08633
https://arxiv.org/pdf/1711.02633


History of Jet Tagging with Deep Learning
• Energy Flow Networks: (Via DeepSet)
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• ParticleNet: (Via Point Cloud)

Fig from 1810.05165 Fig from 1902.08570

https://arxiv.org/pdf/1810.05165
http://arxiv.org/abs/1902.08570


History of Jet Tagging with Deep Learning
• ABCNet: (Via Attention)

6

• Particle Transformer(Via Transformer) 

Fig from 1810.05165 Fig from 2202.03772

https://arxiv.org/pdf/1810.05165
http://arxiv.org/abs/2202.03772


Transformer Models
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Transformer
This is what we need!

This is what we 
do not need!



Attention Mechanism
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Multi-Head Attention



Architecture of MIParT
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More-Interaction Particle Transformer (MIParT) Fig from 2407.08682

Encoder

Decoder

https://arxiv.org/abs/2407.08682


Attention Block
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BatchNorm: Better Suited for Computer Vision，
Less effective in NLP due to unaligned word 
vectors and incomparable features at the same 
positions.

LayerNorm: Effective for NLP，Performs 
normalization at the layer level, so its effectiveness 
does not depend on the batch size.

GELU works better than ReLU and ELU because it 
provides a smoother way of activating neurons, 
which helps the model learn more complex patterns. 

GELU handles both positive and negative values 
more effectively than ReLU, which ignores negative 
values, and ELU, which can be more complex to 
compute.

Transformer →Normformer

Fig from 2407.08682

https://arxiv.org/abs/2407.08682


MI-Particle Attention Block
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Fig from 2407.08682

• LN represents Layer Normalization

• GELU represents the Gaussian Error 
Linear Unit activation function

• The shape of U is (N,N,C), while 
both the

• Input x and the output x′ have the 
same shape (N,C)

https://arxiv.org/abs/2407.08682


Particle Attention Block
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Fig from 2407.08682 Fig from 2202.03772

• LN represents Layer Normalization

• GELU represents the Gaussian Error 
Linear Unit activation function

• The P-MHA is implemented using 
the PyTorch’s MultiheadAttention
by providing the interaction matrix 
U as the attn mask input.

• The shape of U is (N,N,C), while 
both the

• Input x and the output x′ have the 
same shape (N,C)

https://arxiv.org/abs/2407.08682
http://arxiv.org/abs/2202.03772


Class Attention Block
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ViT Transformer (left): The class 
embedding (CLS) is added with the patch 
embeddings from the beginning, which uses 
the same weights for attention and 
classification, leading to suboptimal 
performance.

Improved Approach (middle): Inserting the 
class embedding (CLS) later in the network 
after processing the patch embeddings 
shows better performance.

CaiT Architecture (right): The class 
embedding (CLS) is added later, with frozen 
patch embeddings to save computation, and 
the last layers are dedicated to summarizing 
information for classification, improving 
efficiency and performance.

Fig from 2407.08682 Fig from 2103.17239

https://arxiv.org/abs/2407.08682
https://arxiv.org/abs/2103.17239


Implementation Details

14

• K = 5 MI-particle attention blocks, 
• L = 5 particle attention blocks, 
• 2 class attention blocks
• D_1 = 64, D_2 = 8
• Trained on an NVIDIA RTX 4090 GPU, using a 

learning rate of 0.001 and a batch size of 256. 
Training was limited to 15 epochs to prevent 
overfitting.

• Input features for x: 
• 7 kinematic
• 6 particle identification

• Input features for U: 

（ particle interaction features ）

2202.03772

http://arxiv.org/abs/2202.03772


Implementation Details
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• K = 5 MI-particle attention blocks, 
• L = 5 particle attention blocks, 
• 2 class attention blocks
• D_1 = 64, D_2 = 8

• K = 5 MI-particle attention blocks, 
• L = 5 particle attention blocks, 
• 2 class attention blocks
• D_1 = 128, D_2 = 8

MIParT-Large

MIParT • For Top Tagging & Quark-gluon Dataset

Trained on an NVIDIA RTX 4090 GPU, using a learning rate 
of 0.001 and a batch size of 256. Training was limited to 15 
epochs to prevent overfitting.

• Pre-trained MIParT-L on 100M JetClass Dataset

Pre-trained on dual NVIDIA RTX 3090 GPUs using a learning 
rate of 0.0008 and a batch size of 384, with pre-training limited 
to 50 epochs to avoid overfitting.

• Fine-tuned on Top Tagging & Quark-gluon Dataset

Replaced the last MLP for classification with a newly initialized 
MLP having two output nodes. All weights were then fine-
tuned across the datasets for 20 epochs. We used a learning rate 
of 0.00016 for the pre-trained weights and 0.008 for the new 
MLP.



Key Performance Metrics
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Background Rejection at a Certain 
Signal Efficiency：

Accuracy: AUC:



On the Top Tagging Dataset

17Fig from 2407.08682

• MIParT achieved accuracy and AUC metrics similar to 
LorentzNet (Lorentz-equivariant methods) , with 
comparable Rej50% and Rej30%.

• MIParT outperformed ParT, with 25% better background 
rejection at 30% signal efficiency.

• MIParT-L (pre-trained on 100M JetClass) showed a 39% 
improvement in background rejection, matching fine-
tuned ParT.

https://arxiv.org/abs/2407.08682


On the Quark-gluon Dataset

18Fig from 2407.08682

• The MIParT model significantly outperforms LorentzNet
across all metrics

• MIParT achieves the best performance across all evaluation 
metrics, improving background rejection power by 
approximately 3% compared to ParT.

• MIParT-L (pre-trained on 100M JetClass) showed a 6% 
improvement in background rejection, surpassing fine-tuned 
ParT.

https://arxiv.org/abs/2407.08682


Performance on different sizes of JetClass
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• As the dataset size increases, the performance of the models improves.

• MIParT-L and ParT exhibit nearly identical effectiveness on very large datasets, 
surpassing that of ParticleNet.



Conclusion
• On the Top Tagging Dataset: MIParT model significantly outperformed ParT in 

the top tagging benchmark, with  approximately 25% better background rejection at 
a 30% signal efficiency.

• On the Quark-gluon Dataset: MIParT achieves the best performance across all 
evaluation metrics, improving background rejection power by approximately 3% 
compared to ParT.
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• MIParT outperformed ParT on both 
tasks, while requires only 30% of the 
parameters and 53% of the complexity 
needed by ParT. 

• Fine-tuned MIParT-L improved 39% 
on top tagging and 6% on quark-gluon, 
surpassing Fine-tuned ParT.



Thanks！
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