

Measurement of jet suppression down to low $p_{\rm T}$ in Pb-Pb collisions with ALICE

Wenhui Feng

Central China Normal University

16.11.2024

第十届中国LHC物理会议, The 10th China LHC Physics Conference

Jets as a probe of the quark-gluon plasma

- Jet: a collimated cluster of hadrons produced by the fragmentation of high-energy quarks or gluons
- Jet quenching: jet energy loss caused by interaction between jet and QGP medium
- Jet nuclear modification factor:

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{d^2 N_{jets}^{AA} / dp_{T} d\eta}{\sigma_{jets}^{pp} / dp_{T} d\eta}$$

Jets measurements down to low p_{T}

- Jet measurements in Pb-Pb challenging due to large non-uniform uncorrelated background
- Current ALICE jet R_{AA} measurement: low p_T reached with Machine Learning based background subtraction

ALICE in Run 2 & Run 3

- **ITS** (Inner Tracking System)
 - □ Primary vertex reconstruction
 - □ Charged particle tracking
- **TPC** (Time Projection Chamber)
 - **D** Charged particle tracking
 - Particle identification

Charged-particle jet reconstruction

ALICE in Run 2 & Run 3

Jets analysis with event mixing technique

- Assembly of mixed events (ME):
 - Categorisation of events into 9600(multiplicity, z-vertex, event plane, *p*^{sum}_{T,tracks}) categories
 - One track form each real event
 - Remove multi-hadron correlations in ME
- Same events (SE): real events
- Jet analysis:
 - **D** Charged particle jets: anti- $k_{\rm T}$, R = 0.3, $|\eta| < 0.6$
- Background correction:
 - **D** Remove pedestal underlying event from the jets:

 $p_{\mathrm{T,jet}}^{\mathrm{reco}} = p_{\mathrm{T,jet}}^{\mathrm{raw}} - A_{\mathrm{jet}} * \rho$

- Use Mixed Event (ME) to remove combinatorial jets from the yield
- Unfolding to correct for smearing

Raw jet distribution -R = 0.3

- Inclusive distribution of partons at low p_T: many overlapping objects, cannot reconstruct as distinct jets
 - □ Introduce a small bias to define physics jet
 - □ Vary the bias to measure its effect and determine the $p_{\rm T}$ region where the bias is negligible

Raw biased jet distribution, $p_T^{lead} > 3 \text{GeV/}c$

Raw jet distribution -R = 0.3

- Inclusive distribution of partons at low p_T: many overlapping objects, cannot reconstruct as distinct jets
 - □ Introduce a small bias to define physics jet
 - □ Vary the bias to measure its effect and determine the $p_{\rm T}$ region where the bias is negligible
- Essential criterion for ME: ratio needs to be flat on the left-hand side (not jet signal)
- Normalisation of ME: data driven

Raw biased jet distribution, $p_T^{lead} > 3 \text{GeV/}c$

Raw jet distribution – after subtraction

- Inclusive distribution of partons at low p_T: many overlapping objects, cannot reconstruct as distinct jets
 - □ Introduce a small bias to define physics jet
 - □ Vary the bias to measure its effect and determine the $p_{\rm T}$ region where the bias is negligible
- Essential criterion for ME: ratio needs to be flat on the left-hand side (not jet signal)
- Normalisation of ME: data driven
- Subtraction of combinatorial background yield using ME
- ME procedure removes uncorrelated bkg yield
- Leading track $p_{\rm T}$ cut generates countable objects

ALI-PREL-550380

Raw correlated biased jet distribution, $p_T^{lead} > 3 \text{GeV}/c$: SE-ME

Corrected jet distributions -R = 0.3

- Once the yield is subtracted, unfolding to correct the smearing of jets
- Fully corrected charged-particle jet distributions with $p_T^{lead} > 3 \text{ GeV/c}$ and $p_T^{lead} > 4 \text{ GeV/c}$
- Systematic uncertainties from ME, DCA, tracking efficiency and unfolding
- Determining where the bias is small
- Effect of the leading track bias: no bias within uncertainties for $p_{T,jet} > 13.5 \text{ GeV/}c$
 - > unbiased Pb-Pb at $p_{T,jet} > 13.5 \text{ GeV/c}$

Charged-particle jet R_{AA}

- *R*_{AA} is calculated relative to unbiased pp chargedparticle jets¹
- Combined pp and Pb-Pb uncertainties
- Syst. + stat. uncertainties added in quadrature
 - > unbiased Pb-Pb R_{AA} down to 13.5 GeV/c

¹Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019.

Charged-particle jet R_{AA} – model comparisons

- *R*_{AA} is calculated relative to unbiased pp chargedparticle jets¹
- Combined pp and Pb-Pb uncertainties
- Syst. + stat. uncertainties added in quadrature
 - > unbiased Pb-Pb R_{AA} down to 13.5 GeV/c
- Models describe R_{AA} at high p_T, disagree with each other at low p_T

¹Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019.

ALI-PREL-565568

Charged-particle jet R_{AA} - comparison to RHIC

- Comparison of reconstructed jet suppression at LHC & RHIC in the same kinematic range
- Unbiased Au+Au at $p_{T,jet} > 16 \text{ GeV/}c$
- Comparable R_{AA} between $\sqrt{s_{NN}} = 200 \text{GeV}$ and $\sqrt{s_{NN}} = 5.02 \text{TeV}$
- > Same R_{AA} does not mean same energy loss

CLHCP2024

Wenhui Feng | wenhui.feng@cern.ch

¹Unbiased pp: ALICE collaboration, Phys. Rev. D, 100, 092004, 2019. STAR: Phys.Rev.C 102 (2020) 5, 054913

First background study with Run 3 Pb-Pb data

- Important assessment of detector response for jet studies
- Similar shapes and widths as in Run 2

 Two pedestal background subtraction methods in four centrality classes

Summary & outlook

- First application of event-mixing approach to inclusive jet measurements
- Unbiased Pb-Pb jet R_{AA} measurement down to lower p_{T}
- Comparison of jet suppression at LHC & RHIC

Outlook:

- Run 3 Pb-Pb analysis:
 - **D** Jet R_{AA} measurement at $\sqrt{s_{NN}} = 5.36$ TeV
 - Study of path length dependent jet energy loss

Thanks for your attention!

BACK UP

Corrections for $p_{\rm T}$ smearing

- Unfolding: correction of $p_{\rm T}$ smearing due to background and detector effects
- Background effects: corrections for local fluctuations
- Detector effects: corrections for efficiency and $p_{\rm T}$ resolution
- Response matrix calculation with embedding of PYTHIA jets into SE
- ROOT unfolding framework RooUnfold with Bayesian unfolding method
- Prior: PYTHIA particle level
- Correction for jet reconstruction efficiency after unfolding

ALI-PREL-550384