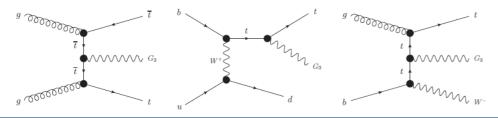


Search for a heavy resonance produced in association with and decaying to a tt pair in the single lepton final state with CMS at $\sqrt{s} = 13$ TeV

Xiaonan Hou

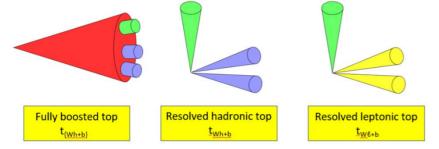
on behalf of the CMS Collaboration

Institute of High Energy Physics and Chinese Academy of Science


中國科學院為能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

A search for a top-philic heavy resonance, Z', produced in association with and decaying to a tt pair is presented. The data were recorded by the CMS experiment in proton-proton collisions at the LHC at $\sqrt{s} = 13 \, TeV$ and correspond to an integrated luminosity of 138 fb^{-1} . Given the high top quark multiplicity, a dedicated algorithm is developed to reconstruct the top quark in each possible decay topology. This includes using a large-radius jet for the hadronic decay in the case of a large Z'-top quark mass splitting. The invariant mass of the first 2 reconstructed tops is used to investigate a Z' in the mass range of 0.5 to 3 TeV with widths of $\frac{\Gamma}{Z'_M} = 4\%$. The data are found to be in agreement with the Standard Model background prediction. Lower limits at 95% CL are set on Z' mass. These results represent the most stringent constraints on the existence of Z' in this scenario.

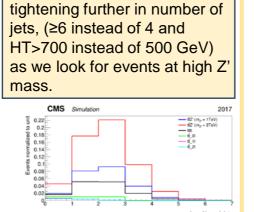

Introduction

- Discovery of Higgs boson motivates search for new physics
 If couplings to light-quarks are suppressed, Z' can manifest via
- new mechanisms: t-quark fusion, b-quark fusion and VBF.Recently both ATLAS and CMS have the results for SM tttt
- measurement.
- We search for a Z' associated with tops in the single lepton final state. (ttZ', Z'->tt; 1l+jets)
- We use the Top-philic-Zprime_V1 UFO model.
- Z' mass range: 0.5 TeV 3TeV, width: 4%

Analysis strategy

• A dedicated top reconstruction algorithm with different top decays:

- 1. Reconstruct all top candidates (regardless of whether they share the same constituents)
- 2. Define a $x^2 = \left(\frac{\text{recoTopmass} \text{genTopmass}}{\sigma_t}\right)^2 + \left(\frac{\text{recoWmass} \text{genWmass}}{\sigma_W}\right)^2$ resolutions from simulation, and sort all tops in χ^2 -increasing order (boosted top have $\chi^2 = 0$)
- 3. Select a top candidate if χ 2<5, and next top does not share constituents with previous one.


Final discriminating variable:

Z' mass = invariant mass of the first 2 tops have the highest p_T

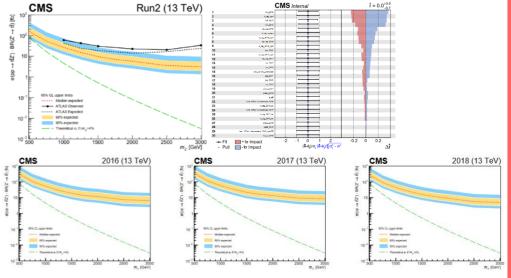
Event Selection

In order to improve the sensitivity of the analysis, the following

- selection is applied: ✓ Exactly 1 lepton
- Single lepton triggers
- ✓ Noise filters
- ✓ HT > 700 GeV (HT = sum of pt of all AK4 jets)
- ✓ MET pt > 60 GeV
- ✓ Number of jets >= 6
- ✓ event categorization: >= 2 boosted tops && >=1 loose b jets
- ✓ ST > 200 GeV (ST = sum of pt of all the tops)

similar with SM 4top (11), but

Background Estimation


• We define a CR that closely resembles the SR in composition, and applied a correction factor from the CR to fully calibrate the background.

Signal Region		Control Region Exactly 1 lepton Single lepton triggers Noise Filters HT > 700 GeV MET pT > 60 GeV		Signal contamination			
Exactly 1 lepton	n						
Single lepton tr	iggers			Eff	SR	CR	
Noise Filters				500 0 - 1/	0.450700/	0.02310% 0.22740%	
HT > 700 GeV				500 GeV	0.15070%		
MET <u>pT</u> > 60 G	e∨			3 TeV	2.48830%		
N jets >= 6		N jets >= 6		0.00			
>= 2 boosted tops && >= 1 loose b jets		>= 2 boosted tops && < 1 loose b jets					
ST > 200 GeV		ST > 200 GeV					
Backgroun	d com	position comparise	on				
BKG ttbar	other	top (ttt, tt+boson, st)		tttt	Non top (t	Non top (bosons/DY)	
SR 74.74%	20.72%			3.99%	0.55%		
CR 67.86%	CR 67.86% 30.48%				0.51% 1.15%		
E CMS Simulation	138 fb ⁻¹ (1		13	8 fb ⁻¹ (13 TeV)	CMS Simulation	138 fb ¹ (13 TeV)	
	- tiber SR - tiber CR 40m 5000			• • • • • • • • • • • • • • • • • • •		- single top SR - single top CR 4387 - solo re- solo	
Our control	-						
	regio	n appear rather sir	mila	ar to our s	signal regio	on	

		58.8 /b ⁺ (13 TeV)		41.5 lb*	10 TeV)	36.3 Ib ⁺ (13 TeV)
Const. Const.	CMS Pretminery	in the set	CMS Perintary	2013年1月1日 2015 111111 11111 111111 111111 11111 111111	CMS Pedataay	22 to 2 = 20 (20 ° 4 ° 4 to 2 = 20 (20 ° 4 ° 4 to 2 = 20 (20 ° 4 ° 4) 20 ° 4 ° 4 ° 4 20 °
10000000		•		• <u>•</u>		
ALC: NO.	5 	3000 4000 5000 m, (GeV)		2303 2010 4000 5000	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2000° 3000° 4111 5000° m ₂ (04)
	year	2018	2	017	2016	
	SF	0.939 +/- 0.	122 0	.804 +/- 0.13	5 1.065	+/- 0.157

Results

- Expected upper limit on $\sigma(pp \to tt~Z')$ as a function to Z' mass with a width of 4%

- This is the first result of search for ttZ' in single lepton final state in CMS
- We use a wider range than ATLAS from 0.5 TeV to 3 TeV
- We are slightly better than ATLAS result