A LYSO Crystal Calorimeter for DarkSHINE Experiment

Zhiyu Zhao^{1,2,3} (<u>zhiyuzhao@sjtu.edu.cn</u>), on behalf of DarkSHINE working group

- 1. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 1 Lisuo Road, Shanghai 201210, China
- 2. Institute of Nuclear and Particle Physics, School of Physics and Astronomy, 800 Dongchuan Road, Shanghai 200240, China
- 3. Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology (SKLPPC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

DARK SHINE

Introduction

A large amount of astronomical observations has strongly indicated the existence of dark matter. New physics theories beyond the Standard Model predict candidate particles for DM, with the "Dark Photon" being a prominent candidate.

Dark SHINE is an experiment designed to detect the decay of dark photons into invisible light-mass DM particles (LDM). It relies on the Shanghai Hard Xray Free Electron Laser (SHINE) facility, which is expected to employ an 8 GeV high-frequency single electron beam to collide with a target. By measuring the energy loss of recoiled electrons, DarkSHINE detector has excellent sensitivity for detecting dark photons with mass in MeV range.

LYSO Crystal ECAL for DarkSHINE		Radiation Damage	
 Non-uniform magnetic field Tungsten target (0.1 X₀) 	Electromagnetic calorimeter (ECAL)	 Radiation damage from 3 × 10¹⁴ electron-on target events was estima Ionizing energy loss in the most irradiated crystal: ~10⁷ rad Non-ionizing energy lose in the most irradiated silicon : ~10¹³ n_{ea} 	ted

- Silicon tracker: tag and recoil
- LYSO Crystal ECAL
- Scintillator-steel HCAL

 $52.5 \times 52.5 \times 44 cm^3$ volume with 4851 LYSO crystals ($2.5 \times 2.5 \times 4cm^3$)

- Homogenous ECAL, 3D segmentation
- Staggered structure to prevent leakage
- 3×10^{14} events/year at 10MHz

Key requirements **D** Radiation hardness Large volume **G** Fast response

Signal and Background

ECAL rejection

Tracker and HCAL rejection

Unit test

LYSO covered by ESR, coupled with SiPM

- DESY beam test, Oct. 2023
- 1-5 GeV single electrons
- SiPMs show obvious saturation especially at 5GeV

5 GeV e-, E_{dep} in Ch3

The 10th China LHC Physics Conference (CLHCP2024)