

Search for heavy right-handed Majorana neutrinos in $t\bar{t}$ decays in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Tongbin Zhao

Supervisor: Lianliang Ma

CLHCP2024 Workshop

16/11/2024

Overview

Search for the HNL in the decay of the top

quark

- ✓ Introduction
- ✓ Data/MC samples
- ✓ Object selection
- ✓ Analysis strategy
- ✓ Uncertainties
- ✓ Statistical treatment
- ✓ Results

Paper has been accepted by PRD arXiv: <u>2408.05000</u>

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Aug 2024

6

[hep-ex]

arXiv:2408.05000v1

Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for heavy right-handed Majorana neutrinos is performed with the ATLAS detector at the CERN Large Hadron Collider, using the 140 fb⁻¹ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected during Run 2. This search targets $t\bar{t}$ production, in which both top quarks decay into a bottom quark and a *W* boson, where one of the *W* bosons decays hadronically and the other decays into an electron or muon and a heavy neutral lepton. The heavy neutral lepton is identified through a decay into an electron or muon and another *W* boson, resulting in a pair of same-charge same-flavor leptons in the final state. This paper presents the first search for heavy neutral leptons in the mass range of 15–75 GeV using $t\bar{t}$ events. No significant excess is observed over the background expectation, and upper limits are placed on the signal cross-sections. Assuming a benchmark scenario of the phenomenological type-I seesaw model, these cross-section limits are then translated into upper limits on the mixing parameters of the heavy Majorana neutrino with Standard Model neutrinos.

Motivation

- $\checkmark\,$ Neutrinos are massive and mixing.
- \checkmark The seesaw mechanism theory provides an explanation for the small mass of neutrinos.
- ✓ Type-I seesaw is the simplest, adding 3 heavy RH Majorana neutrinos N₁, N₂, N₃. N_i can couple to SM neutrinos via coupling strength V_{iN}
- Neutrino-less double-beta decay: a lepton number violation of |ΔL| = 2 along with the process of generating Majorana neutrino.

Other analysis:

- ✓ With the Drell-Yan process $q\bar{q} \to W^* \to N\ell$.
- ✓ <u>JHEP10 (2019) 265 (</u>ATLAS) (36.1 fb⁻¹, [4.5,50]GeV, $|V_{iN}|^2$ > 1.4 * 10⁻⁵)
- ✓ JHEP01 (2019) 122 (CMS) (35.9 fb⁻¹, [1,1200]GeV, $|V_{iN}|^2$ > 2.3 × 10⁻⁵)
- ✓ arXiv:2403.00100 (CMS) (138 fb⁻¹, [10,1500]GeV, $|V_{iN}|^2 > 4.8 \times 10^{-6}$, latest)
- ✓ EPJC 83 (2023) 824 (ATLAS) (140 fb⁻¹, [50, 20000]GeV, $|V_{\mu,N2}|^2 > 0.1$, latest results from same-sign WW scattering process)

 \checkmark LHC is a top factory and this analysis searches for heavy neutral leptons in the $t\bar{t}$ process.

$$V_{\ell,N} = \begin{pmatrix} V_{e,N1} & V_{e,N2} & V_{e,N3} \\ V_{\mu,N1} & V_{\mu,N2} & V_{\mu,N3} \\ V_{\tau,N1} & V_{\tau,N2} & V_{\tau,N3} \end{pmatrix}$$

 $W^{-(*)}$

Motivation

Phys. Rev. D 101, 071701(R) (2020) by Hang Zhou

This analysis:

- ✓ Only the diagonal mixing terms are considered, which means the N1/N2/N3 only couples to e/mu/tau, respectively ✓ The first time the beauvilight neutrino mixing parameter value $|V_{e,v}|^2$ measured in top
- ✓ The first time the heavy-light neutrino mixing parameter value $|V_{\ell,N}|^2$ measured in top quark decay with 140 fb⁻¹

Signal process

<u>Signal process</u> -> tt :

One top with SM decay and the other top with BSM decay

- ✓ Focus on the 2LSS final state: On-shell W from SM top and off-shell W^{*} both decay hadronically
- ✓ 10 signal mass points for HNL: **15, 25, 35, 40, 45, 50, 55, 60, 70 and 75 GeV**

Signal modelling:

- ✓ BSM signal process with HeavyN UFO Model (<u>JIRA ticket</u>)
- ✓ Athena 21.6.48 setup and AtlFast2 simulation
- ✓ MadGraph5_aMC@NLO 2.7.3 generator
- ✓ PDF: NNPDF3.0NLO
- ✓ Parton shower and hadronization: Pythia 8.244

Backgrounds considered in this analysis

Dominant backgrounds:

- ✓ $t\bar{t}$ (PhPy8 1 nonallhad sample 410470)
- ✓ t̄tW (Sh2.2.10 1 QCD sample 700168 + 1 EW sample 700205)
- ✓ tītZ (aMc@Py8 3 sample 504330, 504334, 504343)
- ✓ $t\bar{t}\gamma$ (MadGraph@Py8 1 sample 410389)
- ✓ $t\bar{t}H$ (PhPy8 2 samples 346344,346345)

Other backgrounds:

- ✓ V+jets production (Sh2.2.1 84 samples)
- ✓ Drell-Yan production (Sh2.2.1 18 samples)
- ✓ VV/VVV production (Sh2.2.2 23 samples)
- ✓ **Single-t** production (Powheg@Py8 6 samples)
- ✓ tWZ, tZq, 3tops, 4tops, tTWW production (5 samples)
- ✓ VH, tHW, tHq, tTXX production (8 samples)

Object selection and event selection

Object selection

Apply single lepton trigger and overlap Removal Electrons :

Pseudorapidity range Transverse momentum Track to vertex association	$\begin{array}{l l} (\eta < 1.37) & & (1.52 < \eta < 2.47) \\ p_{\rm T} > 10 {\rm GeV} \\ d_0 / \sigma_{d_0} < 5 \\ \Delta z_0^{\rm BL} \sin \theta < 0.5 {\rm mm} \end{array}$
Identification	(TightLH)
Isolation	PLImprovedTight
Loose isolation	PLVLoose
Extra selections	ECIDS, ambiguity cuts

Muons :

Selection working point	Medium	pT Cut	10 GeV
Isolation	PLImprovedTight	$ \eta $ cut	< 2.5
Loose isolation	PLVLoose	$ d_0 /\sigma_{d_0}$	3
		$ \Delta z_0 \sin \theta_\ell $ cut	0.5 mm

Jets :

✓ p_T > 20 GeV

✓ |η| < 4.5</p>

B-tagging:

- ✓ CDI: 2020-21-13TeV-MC16-CDI-2021-04-16 v1.root.
- ✓ BTaggingWP: DL1r 85% WPs efficiency

• Pre-selection on analysis level:

- ✓ Exactly a pair of same-sign electrons or muons and the leading lepton with $p_T > 27 \text{ GeV}$
- ✓ At least 2 b-tagged jets with p_T > 25 GeV
- ✓ At least 4 non-b-tagged jets
 - ✓ Central jets ($|\eta|$ < 2.5): p_T > 20 GeV
 - ✓ Forward jets (4.5 > $|\eta|$ > 2.5): p_T > 35 GeV
- ✓ m_{ℓℓ} > 12 GeV

Event reconstruction

Event selection								
Exactly 2 same-sign same-flavor leptons								
>= 2 b-jets + >= 4 non b-tagged jets								
Top with BSM decay	W with BSM decay	Top with SM decay	W with SM decay					
1 bjet 2 lepton 2 jets	2 lepton 2 jets	1 bjet 2 jets	2 jets					

✓ Reconstruct χ^2 of m_{TopSM}, m_{TopBSM}, m_{WBSM} and m_{WSM}, then minimize the sum of four χ^2 to determine the best combination.

✓
$$q_i \rightarrow j_i$$
 ✓ Top with SM decay:
 $m_{b_1 j_1 j_2}$
 ✓ W with SM decay:
 $m_{j_1 j_2}$
 ✓ Top with BSM decay:
 $m_{b_2 l_1 l_2 j_3 j_4}$
 ✓ W with BSM decay
 $m_{l_1 l_2 j_3 j_4}$

$$\chi^{2} = \Sigma_{i=1}^{4} \frac{(m_{i} - M_{t/W})^{2}}{\sigma_{i}^{2}}$$

- ✓ $M_t = 172.76 \, \text{GeV}$
- ✓ $M_W = 80.379 \text{ GeV}$

 ✓ i = Index of the four reconstructed objects used in the calculation

$$W_1$$

 \bar{t}_1
 \bar{t}_2
 W_2
 \bar{t}_2
 \bar{t}_1
 \bar{t}_1
 \bar{t}_1
 \bar{t}_2
 \bar{t}_1
 \bar{t}_2
 \bar{t}_1
 \bar{t}_2
 \bar{t}_2
 \bar{t}_1
 \bar{t}_2
 \bar{t}_2
 \bar{t}_3
 \bar{t}_4

Treatment of the non-prompt leptons

Template fit method is used for the non-prompt sources of leptons

- ✓ Assume the shape of the backgrounds in control regions is the same as in signal regions
- ✓ Fit rates of background templates to data in selected control regions

For the fake leptons from heavy flavor decays:

✓ Tight isolation (PLIVTight) is performed to reduce the contribution from the fake leptons

For the electron from the charge misidentification:

✓ ECIDS algorithm is used to suppress the Q-flip effects

For the electron coming from the conversion of the photons:

Electron Ambiguity Tools are used to suppress the photon conversion contribution

	Analysis regions for the <i>ee</i> channel												
Region	Tight isolation	e/γ ambiguity removal	ECIDS criteria	m_{ee} requirement									
SR	Both <i>e</i>	Both <i>e</i>	Both <i>e</i>	< 80 GeV									
<i>ttW</i> CR	Both <i>e</i>	Both <i>e</i>	Both <i>e</i>	> 100 GeV									
HF CR	At most one e	Both e	Both <i>e</i>	> 70 GeV									
PC CR	-	At most one <i>e</i>	Both <i>e</i>	> 75 GeV and Z veto									
CF CR	_	Both <i>e</i>	At most one e	> 60 GeV and Z veto									

Analysis regions for the $\mu\mu$ channel										
Region	Region Isolation criteria $m_{\mu\mu}$ requirement									
SR	Both μ	< 80 GeV								
<i>ttW</i> CR	Both μ	> 80 GeV								
HF CR	At most one μ	> 75 GeV								

- ✓ The signal regions for both the *ee* and $\mu\mu$ channels are defined by applying the tighter isolation criteria on the same charged leptons and mll < 80 to suppress Z -> *ee* events.
- ✓ Additionally, in the *ee* channel, both electrons are required to satisfy the criteria of the ECIDS tool and the e/γ ambiguity removal, which are applied to suppress the charge flip and photon conversion contamination

Multi-variate analysis (BDT)

Performed Boosted decision tree(Gradient) for separation of

signal and backgrounds using the scikit-learn package

- ✓ Signal: 10 mass points are divided into high and low mass training sets
- High mass set: HNL[45, 50, 55, 60, 70, 75] GeV
- Low mass set: HNL[15, 25, 35, 40] GeV

(Merged 10 different training into 2 training, gain much more sensitivity)

- ✓ Background: all backgrounds considered
- ✓ Perform Cross-Validation Check: 2-fold
- ✓ Negative weights treatment: use absolute value of weights

MVA performance

MVA optimization and performance:

- Implemented the decorrelation of all variables and reduced low importance variables by gain in AUC values
- Only use most significant variables as input and four variables were left without significant loss of signal efficiency

 $(p_t^{lep2}, E_T^{miss}, m_{ll}, M_{bsmW})$

- Training results shows good separation between signal and backgrounds
- ✓ Good agreement between training and testing dataset

raction of Even

Test/training BDT output Search for HNL - Tongbin Zhao - PAM

Separation of the signal/backgrounds

Systematics uncertainties

✓ Lepton SFs:

Electron: efficiencies (Reconstruction, identification, isolation, trigger), energy resolution and energy scale

Muon: efficiencies(Reconstruction and identification, isolation, trigger, Track To Vertex Association), momentum scale and resolution

- ✓ Jet JES (CategoryReduction scheme 30 NPs),
- ✓ Jet JER (Full SmearingModel 13 NPs)
- ✓ B-tagging scale factor efficiency (pseudo-continuous B-tag 45NPs, C-tag 20 NPs, L-tag 20 NPs)
- ✓ **MET resolution, scale** (SoftTrk _ResoPerp/ResoPara and SoftTrk_scale)
- ✓ **Others**: Pile-up reweighting, JVT, fJVT

Pruning of shape uncertainty: 1%

Pruning of overall uncertainty: 1%

Other uncertainties

Modelling uncertainties:

tī & tīH (PhPy8)

- ✓ Alt: Herwig 7
- ✓ Alt: Pythia8 pthard =1
- ✓ Alt: hdamp=3 (only for $t\bar{t}$)
- ✓ PDF set, scale variations μ_R/μ_F , ISR/FSR α_s *tt***W** (Sh2.2.10)
- ✓ Alt: aMc@Pythia with FxFx
- ✓ Alt: Powheg@Pythia 8 Vs Powheg@Herwig 7
- ✓ PDF set, scale variations μ_R/μ_F

tīz (aMc@Py8)

- ✓ Alt:aMc@Herwig7
- ✓ Alt:aMc@Py8 (A14Var3)
- ✓ Scale variations μ_R/μ_F

Signal(aMc@Py8)

✓ PDF set and Scale variations μ_R/μ_F

PDF uncertainties using the PDF4LHC15 prescription

Luminosity: 140 fb⁻¹, 0.83% uncertainties

Processes with free-floating normalization factors:

- ✓ HF-fake e
- ✓ HF-fake μ
- ✓ Charge flip e
- ✓ Photon conversion e
- ✓ Merged $t\bar{t}$ W on ee/µµ channel

Cross section uncertainties: tt T2: 12% tt H: 10% V EW: 30% (VV/VVV and W/Z+jets) Top other: 50% (Other minor backgrounds and compositions from tt /tt γ)

✓ Following the recommendations from the PMG

K SA

Statistical treatment

Profile likelihood fits with the S+B hypothesis across SR+CRs $ee/\mu\mu$ channel fitted separately: 1SR + 4CRs (charge flip, heavy flavor, γ conversion and $t\bar{t}$ W) for ee channel 1SR + 2CRs (heavy flavor and $t\bar{t}$ W) for $\mu\mu$ channel

Unblinded fit in CR of ee channel

Search for HNL - Tongbin Zhao - MPP interview

Unblinded fit in SRs

Sensitivity of unblinding results

- Upper limits on the signal cross-sections at 95% confidence level
- The limit results from ττ channel are taken from the combined fit

m_N [GeV]	15	25	35	40	45	50	55	60	70	75
Exp. $\sigma_{e,N}$ [fb]	21	9.8	7.3	6.9	6.9	6.7	7.2	8.5	18	36
Obs. $\sigma_{e,N}$ [fb]	26	12	8.2	7.8	10	9.7	10	12	26	52
Exp. $\sigma_{\mu,N}$ [fb]	9.3	5.0	3.7	3.5	3.2	3.1	3.2	4.0	8.2	15
Obs. $\sigma_{\mu,N}$ [fb]	7.5	3.9	2.8	2.6	3.2	3.1	3.3	4.2	8.3	15

✓ The tightest observed upper limit on coupling parameters among [15,75] GeV are $|V_{e,N1}|^2 < 2.0 \times 10^{-4}$, $|V_{\mu,N2}|^2 < 6.8 \times 10^{-5}$

tt→ HNL analysis

- ✓ The search is performed on the 2LSS final states based on the full Run-2 data
- ✓ Six control regions based on the selection and two signal regions described with the BDT are applied to our analysis
- Successfully implement the relative experimental and theoretical uncertainties in the fit.
- ✓ This is the first search for HNL with the $t\bar{t}$ decay and the limit from ee/µµ extends the ATLAS results beyond 50 GeV to 75 GeV.
- $\checkmark\,$ The paper has been accepted by the PRD

Thanks for your attention!

MC samples

DSID	name	Generator	Parton shower	PDF	Tune	Description	cross section(pb)	k-factor
410470	tī	Powheg	Pythia 8	NNPDF3.0 NLO	A14	nonallhad	831.76	0.543
504330	ttZ	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14	ttee	36.9	1.12
504334	ttZ	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14	ttmumu	36.9	1.12
504342	ttZ	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14	tttautau	36.7	1.12
700168	ttW	Sherpa 2.2.10	Sherpa 2.2.10	NNPDF3.0 NNLO	Sherpa default		0.599	1.126
700205	ttW j	Sherpa 2.2.10	Sherpa 2.2.10	NNPDF3.0 NNLO	Sherpa default	EW-sub	0.042	1.133
410389	tty	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14	nonallhad	4.62	1.16
346344	tt H	Powheg	Pythia 8	NNPDF 3.0 NLO	A14	semilep	0.22276	1.0
346345	ttH	<i>H</i> Powheg Pythia 8		NNPDF 3.0 NLO	A14	dilep	0.05343	1.0
304014	3t aMcAtNlo		Pythia 8	NNPDF3.0 NLO	A14		0.0016	1.0
410080	4t	aMcAtNlo	Pythia 8	NNPDF3.0 NLO	A14		0.0092	1.0042
410081	ttWW	aMcAtNlo	Pythia 8	NNPDF3.0 NLO	A14		0.0081	1.2231
412063	tZq	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14		0.0289	1.0
412118	tWZ	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14		0.0161	1.0
410646	stop-Wt	Powheg	Pythia 8	NNPDF3.0 NLO	A14	top	37.94	0.945
410647	stop-Wt	Powheg	Pythia 8	NNPDF3.0 NLO	A14	antitop	37.91	0.946
410658	stop-t	Powheg	Pythia 8	NNPDF3.0 NLO	A14	top	36.993	1.191
410659	stop-t	Powheg	Pythia 8	NNPDF3.0 NLO	A14	antitop	22.175	1.183
410644	stop-s	Powheg	Pythia 8	NNPDF3.0 NLO	A14	top	2.0268	1.015
410645	stop-s	Powheg	Pythia 8	NNPDF3.0 NLO	A14	antitop	1.2676	1.015
			Table	C 1. Ton samples	considered			

Table C.1: Top samples considered

DSID	name	Generator	Parton shower	PDF	Tune	Description	cross section(pb)	k-factor
346678	tHW	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14		0.060140	1.0
346676	tHq	aMcAtNlo	Pythia 8	NNPDF 3.0 NLO	A14		0.016719	1.0
500460	ttHH	MadGraph	Pythia 8	NNPDF2.3 LO	A14		0.00074042	1.0217
500461	ttWH	MadGraph	Pythia 8	NNPDF2.3 LO	A14		0.001138	1.3902
500462	ttZZ	MadGraph	Pythia 8	NNPDF2.3 LO	A14		0.0014943	1.2313
500463	ttWZ	MadGraph	Pythia 8	NNPDF2.3 LO	A14		0.0024652	1.576
342284	WH	Pythia 8	Pythia 8	NNPDF 2.3 LO	A14		1.1021	1.2522
342285	ZH	Pythia 8	Pythia 8	NNPDF 2.3 LO	A14		0.60072	1.4476

Table C.2: Rare top samples considered

DSID	name	Generator	Parton shower	PDF	;	Tune	De	scription			
363356	VV	Sherpa 2.2.1	Sherpa 2.2.1	NNPDF3.0	NNLO	default		ZqqZll	15	.563	0.13961
363358	VV	Sherpa 2.2.1	Sherpa 2.2.1	NNPDF3.0	NNLO	default	١	VqqZll	3.	437	1.0
345705	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	gglll	1 0M41130	0.00	99486	1.0
345706	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	ggll	II_130M41	0.0	10091	1.0
345723	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	g	gllvvZZ	0.00	71108	1.0
364250	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default		1111	1.2	2523	1.0
364253	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default		lllv	4.	5832	1.0
364254	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default		llvv	12	.501	1.0
364283	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	111	ljj_EW6	0.0	10471	1.0
364284	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	111	vij_EW6	0.04	46367	1.0
364285	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	llv	vjj_EW6	0.	1163	1.0
364287	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	llvv	j_ss_EW6	0.04	40779	1.0
364288	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	llll_lowM	IIPtComplement	nt 1.4	4318	1.0
364289	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	lllv_lowM	llPtCompleme	nt 2.9	9152	1.0
364290	VV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	llvv_lowM	IllPtCompleme	ent 0.1	7046	1.0
364242	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	WWW	_313v_EW6	0.00	71931	1.0
364243	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	WWZ	_412v_EW6	0.00	17956	1.0
364244	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	WWZ	_214v_EW6	0.00	35429	1.0
364245	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	WZZ	_511v_EW6	0.000	018812	1.0
364246	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	WZZ	313v_EW6	0.00074	47635474	1.0
364247	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	ZZZ	_610v_EW6	1.44	58e-05	1.0
364248	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	ZZZ	_412v_EW6	8.6373	1512e-05	1.0
364249	VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0	NNLO	default	ZZZ	214v EW6	0.0001	7197896	1.0
	DSID	name	Generator	Parton shower		PDF	Tune	Description			
	364198	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zmm	2330.19	0.9751	
	364199	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zmm	82.25676	0.9751	
	364200	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC	default	Zmm	44.87913	0.9751	
	364201	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zmm	5.114990	0.9751	
	364202	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zmm	2.759784	0.9751	
	364203	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zmm	0.4721560	0.9751	
	364204	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	2331.223	0.9751	
	364205	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	81.35769	0.9751	
	364206	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	44.97143	0.9751	
	364207	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	5.481415	0.9751	
	364208	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	2.777411	0.9751	
	364209	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Zee	0.4730864	0.9751	
	364210	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Ztt	2333.926	0.9751	
	364211	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Ztt	81.10263	0.9751	
	364212	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Ztt	44.83686	0.9751	
	364213	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC	default	Ztt	5.540944	0.9751	
	364214	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC	default	Ztt	2.793550	0.9/51	
	364215	Drell-Yan	Sherpa 2.2.1	Sherpa 2.2.1	NNPD	F3.0 NNLC) default	Ztt	0.4697209	0.9751	

Table C.4: Drell-Yan samples considered

Object selection / single lepton trigger information

Feature	Criterion	Feature	Criterion
Pseudorapidity range Transverse momentum	$(\eta < 1.37)$ $(1.52 < \eta < 2.47)$ $p_{\rm T} > 10 {\rm GeV}$	Selection working point	Medium DL ImprovedTight
Object quality	Not from a bad calorimeter cluster (BADCLUSELECTRON) Remove clusters from regions with EMEC bad HV (2016 data only)	Loose isolation	PLImprovedTight PLVLoose
Track to vertex association	$\frac{ d_0 }{\sigma_{d_0}} < 5$ $ \Delta z_0^{\text{BL}} \sin \theta < 0.5 \text{ mm}$	Momentum calibration $p_{\rm T}$ Cut	Sagitta correction 10 GeV
Identification Isolation Loose isolation	(TightLH) PLImprovedTight PLVLoose	$ \eta $ cut $ d_0 /\sigma_{d_0}$ $ \Delta z_0 \sin \theta_\ell $ cut	< 2.5 3 0.5 mm
Extra selections Triggers 2015 Triggers 2016-18	ECIDS, ambiguity cuts e24_lhmedium_L1EM20VH, e60_lhmedium, e120_lhloose e26_lhtight_nod0_ivarloose, e60_lhmedium_nod0, e140_lhloose_nod0	Triggers 2015 Triggers 2016-18	mu20_iloose_L1MU15, mu50 mu26_ivarmedium, mu50
	Table 4.1: Electron selection criteria	Table 4.2. Mr	ion selection criteria

Table 4.1: Electron selection criteria.

Table 4.2: Muon selection criteria.

Construction of the templates

One prompt lepton + the other IFF lepton for SS leptons Split according to the categories provided by the IFF truth classifier Temples for $t\bar{t}$ samples:

- ✓ Prompt
- 🗸 Known-Unknown 🚽
- ✓ Tau-decay e/μ / e from μ
- ✓ B(C) hardon decay e/μ
- ✓ LF-decay e/μ
- ✓ Charge-flip e
- ✓ Photon conversion e

For $t\bar{t}\gamma$ samples:

 $t\bar{t}$ other

Template 1: HF decay contribution of e/μ

Template 2: Qflip of *e*

Template 3: Photon conversion of *e*

- ✓ Contribute to the final states via photon conversion and left floating together with the Photon conversion e from $t\bar{t}$
- ✓ Perform the overlap removal with the inclusive $t\bar{t}$ sample

For $t\bar{t}W/t\bar{t}Z/t\bar{t}H$ samples:

- $\checkmark~$ They contribute to the final states via prompt leptons classes.
- ✓ Dedicated measurements of the cross sections of $t\bar{t}Z/t\bar{t}H$ is deviated from the predictions
- ✓ Template 4: Control region for $t\bar{t}W$ is defined and its normalization is left freefloating in the fit.

Reconstruction for the MVA input

- $p_T^{lep_{\perp}}$
- *MET*
- *H*_T
- η_{lep1}
- η_{lep2}
- m_{*ℓℓ*}
- p_T^{jet1}
- ΔR_{ll} ,
- M_{bsmTreso}
- M_{bsmWreso}
- M_{bsmN1}reso
- M_{bsmN2reso}
- M_{smTreso}
- M_{smWreso}
- N_{jets}
- N_{bjets}

- ✓ H_T : Scalar sum of all leptons and jets transverse momentum
- ✓ $M_{bsmTreso}$: Invariant mass of BSM Top (3+4+5+6+7)
- ✓ $M_{bsmWreso}$:Invariant mass of BSM W (4+5+6+7)
- ✓ $M_{bsmN1reso}$: candidate invariant mass HN with L1 (leading)+6+7
- ✓ $M_{bsmN2reso}$: candidate invariant mass HN with L2 (sub-leading)+6+7

Significance comparison

		channel	HN75	HN60	HN55	HN50	HN45	HN40	HN35	HN25	HN15
•	Book signal with	ee	3.3	9.7	10.9	11.7	11.8	12.1	11.3	8.8	5.5
	their own weights	mm	6.8	16.6	19.1	20.0	18.8	19.2	18.1	14.0	9.7
•	Book signal with	ee	3.1(-6%)	9.6	11.0	11.7	11.9	11.9	11.0	7.8	4.6
	HNL50 weights	mm	6.4	16.2	19.1	20.0	19.0	18.5	17.5	12.6	8.4
•	Book signal with HNL25	ee						11.9	11.4	8.8	5.6
	weights	mm						18.5	18.4	14.0	10.3(+6%)
•	Book signal with high mass set	ee	3.3	9.9	11.4 (-4.6%)	11.7	11.8				
	weights	mm	6.7	16.9	19.4	20.5	19.4				
•	Book signal with	ee						11.5	11.1	9.2	5.3
	low mass set weights	mm						18.1 (-5.7%)	17.9	14.6	9.5

- The largest difference is about 6% (with HNL50), 6% (with HNL25), 4.6% (with high mass set) and 5.7% (with low mass set)
- ✓ Signal: 10 mass points are divided into high and low mass training sets

High mass set: HNL[45, 50, 55, 60, 70, 75] GeV

Low mass set: HNL[15, 25, 35, 40] GeV

MVA performance (high mass)

MVA performance:

- Training results shows good
 separation between signal and
 backgrounds
- No overfit issues observed when comparing the loss function(training and validation)
- ✓ Good agreement between training and testing dataset (only one fold results showed)

2-fold AUC output

Test/training BDT output

Separation of the signal/backgrounds

Loss function

0.Unknown

Leptons are entering the category Unknown (IFF class 0), if they cannot be attributed to any or the classes described bellow.

1.KnownUnknown:

The KnownUnknown category (IFF class 1) refers to leptons which can (in principle) be classified, but the tool fails with the classification due to missing information.

2.IsoElectron

An electron is classified as prompt (or isolated) electron (IFF class 2), if its truth-type (or the type of its EG mother-particle) is corresponding to an

3. Charge Flip Iso Electrons:

The distinction between electrons with correctly-assigned and mis-identified charge (charge-flip), is not relevant for all analyses.

4.PromptMuon:

An muon is classified as prompt (IFF class 4), if its truth-type is corresponding to an isolated muon (== 6), and it originates from a prompt source (e.g. W/Z, top, Higgs).

5.PromptPhotonConversion:

Electrons originating from the conversion of prompt photons (IFF class 5) are identified if the truth-type corresponds to a background electron (== 4) and it originates from a photon conversion or an electromagnetic

6.ElectronFromMuon:

An electron is classified as a muon being reconstructed as electron (IFF class 6) if the truth-type of the electron corresponds to a non-isolated electron or photon (== 3/15) and its truth-origin is a muon. This category gathers also the electrons from muon bremstraulung.

7.TauDecay:

Non-isolated electrons and muons from hadronic tau-decays (IFF class 7), are identified if the truth-type of the leptons corresponds to a non-isolated muon (== 7 for the muon case) or to a non-isolated electron/photon (== 3/15 for the electron case) and its truth-origin is a tau lepton.

8/9.HadronDecay:

Electrons and muons originating from heavy-flavor decays can come from two types: b-hadrons (IFF class 8) and c-hadrons (IFF class 9) which are distinguished in the tool. It is checked if the truth-origin of an electron or muon corresponds to a bottom-meson or baryon (b-type) or to a charm-meson/baryon (c-type). For electrons, the check is also done for the origin of the first EG mother-particle (with the origin required to be b/c-type for either the EG mother- or the final-state particle).

10.LightFlavourDecay:

Leptons produced by light-flavor jets (IFF class 10) are identified by checking if the truth-type of the lepton corresponds to a hadron type (== 17). Also, if the truth-type corresponds to a background electron, muon or photon (== 4/8/16) and it originates from a light-meson, a strange-meson or light/strange-baryons, it is considered for the light-flavour category.

Pre-fit of CR-only fit

Search for HNL - Tongbin Zhao - PAM

NPs (Experimental and modeling)

34

NPs (Theory and HNL related)

 \checkmark Small pulls from the $t\bar{t}$ related modeling uncertainties and $t\bar{t}$ other cross section uncertainties

Data fit results (Correlation)

Data fit ee channel

Data fit $\mu\mu$ channel

 \checkmark The $t\bar{t}$ related modeling uncertainties and NFs contribute significantly to high correlation.

Data fit results (Ranking)

Data fit ee channel

- ✓ The dominant NPs come from the *tt* related modeling uncertainties, NFs and Gammas.
- ✓ These NPs consistently contribute significantly to high correlation.
- ✓ The ranking results also exhibit consistency between the Realistic and data fits.

Data fit $\mu\mu$ channel

Conclusion from the unblinded fit

Overall:

- ✓ No pulls/constraints issues are observed
- ✓ The data fit results (Correlation matrix, pulls, ranking, NFs) are consistent with the blinded fit
- ✓ Post-fit signal normalizations are compatible with Zero

Data fit ee channel

Data fit $\mu\mu$ channel

Unblinded fit in CRs of ee channel

Unblinded fit in CRs of $\mu\mu$ channel

Unblinded fit in SRs (50 GeV)

Tau channel reinterpretation

Results in $ee/\mu\mu$ are reinterpreted to search for N3, assuming sameflavour decay of both tau leptons

Motivation

- ✓ $\tau_{lep} \tau_{lep}$ presents the opportunity to reinterpret main analysis for $V_{\tau,N3}$ mixing
- ✓ Branching ratio is ~ 6%, signal introduces MET from tau decay

$\tau_{lep}\tau_{lep}$ reinterpretation strategy:

- Same signal model but with $\tau\tau$ final state
- Same analysis regions
- ✓ Reutilized ee/mm BDTs

Statistical treatment

Combined fit performed in ee and mm analysis regions

Unblinded fit for tau reinterpretation

