

Development of Simulation Software- RASER

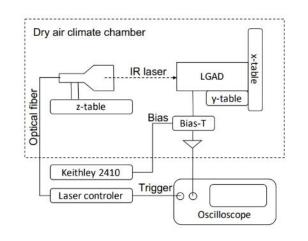
Suyu Xiao on behalf of RASER Team July 22, 2024

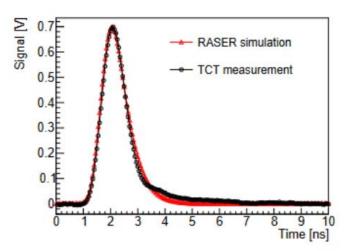
RASER Workshop 2024

- Introduction of RASER
- Simulation of silicon and silicon carbide detectors
- Application of planar SiC detectors in beam monitoring
- Summary

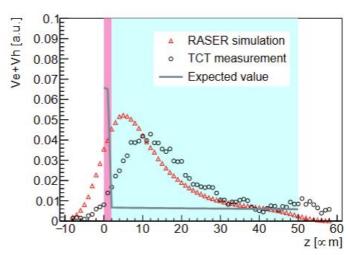
Introduction of RAdiation SEmi-conductoR(RASER)

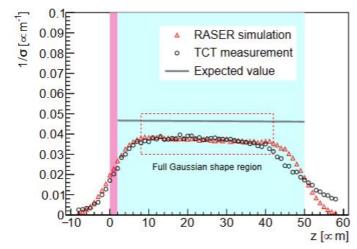
• Induced current:


$$I(t) = -q\overrightarrow{v}(\overrightarrow{r}(t)) \cdot E_w(\overrightarrow{r}(t))$$

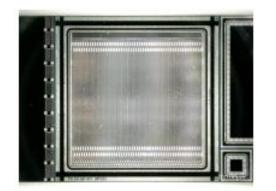

• Electric and weighting field from Poisson and Laplace equation: DEVSIM

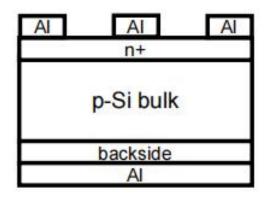
$$abla^2 \vec{\mathrm{U}} \left(r \right) = - rac{
ho}{\epsilon}, \quad
abla^2 \vec{\mathrm{U}}_w \left(r \right) = 0$$


- Particle incident path and deposition energy distribution: GEANT4
- Electronic simulation: NGSpice


Simulation of silicon LGAD

LGAD edge-TCT layout(left) and waveform example(right)

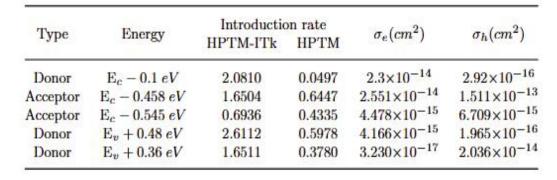

Traditional slope method(left) and carrier diffusion method (right) in LGAD

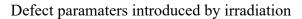

- Si LGAD simulation implemented in RASER
- Construct edge-TCT system based on infra-red laser
- Propose a method for evaluating electric field based on carrier diffusion, $\frac{di_q}{dt}\Big|_{max} = \frac{k_2 \sum N}{\sqrt{\tau^2 v_e^2 + \sigma^2}}$ significant improvement compared to traditional slope method used in PIN

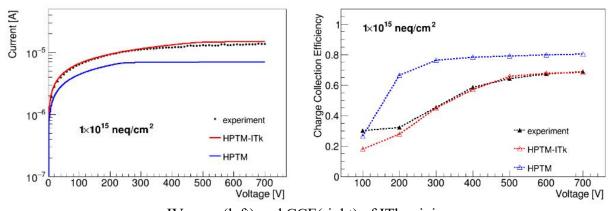
Electric Field Measurement by Edge Transient Current Technique on Silicon Low Gain Avalanche Detector, NIMA

S

Simulation of silicon strip detectors





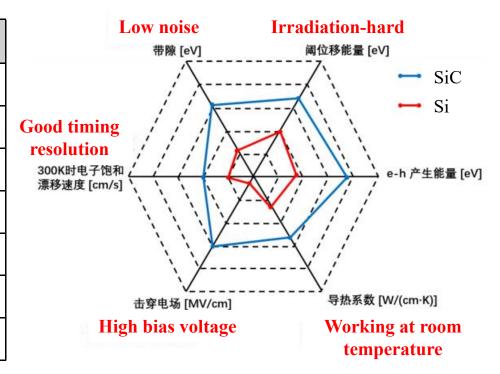

Silicon strip ITk mini sensor(left) and cross section(right)

$E[V/\mu m]$	$E[V/\mu m]$	
3	3	
1		
0 50 100 150 200 250 30 $z[\mu m]$	00 0 50 100 150 200	250 300 z[μ m]

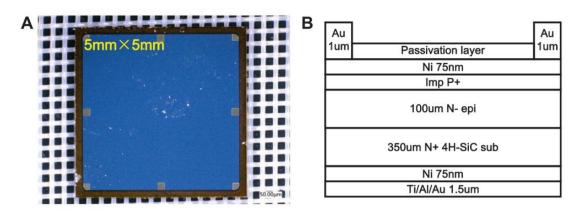
Electric field of ITk mini sensor before(left) and after(right) irradiation in RASER

IV curve(left) and CCE(right) of ITk mini sensor

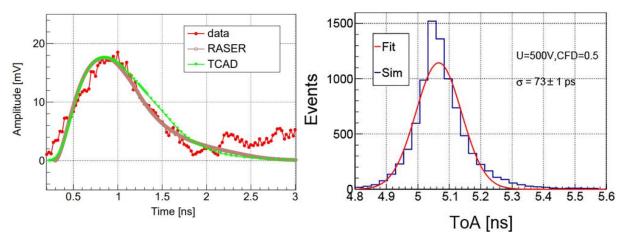
Optimizing the irradiation model parameters, the IV and CCE achieved


Advantages of silicon carbide

With the increase of collision brightness and detector size, silicon are facing two challenges:


- Near the limit of irradiation-hard \rightarrow replace detector regularly
- Leakage current increases with irradiation \rightarrow cooling equipment

Silicon carbide is expected to achieve breakthroughs in the above two aspects.


物理量	Si	SiC
Bandgap[eV]	1.12	3.26
Thermal conductivity[W/K cm]	1.5	4.9
Breakdown[MV/cm]	0.3	2.0
Atomic displacement threshold energy[eV]	13	22
Average ionization energy[eV/e-h]	3.6	7.8
Electron saturation drift velocity[cm/s]	1×10^7	2×10 ⁷
Hole saturation drift velocity[cm/s]	0.6×10^{7}	1.8×10^{7}

Simulation of silicon carbide detectors

4H-SiC PIN(left) and cross section(right)

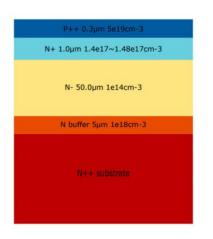
Waveform from RASER(left) and timing resolution(right)

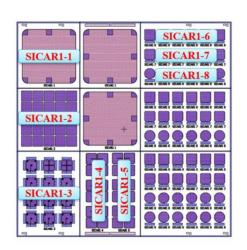
- 4H-SiC PIN detector fabricated by Nanjing University, 100 μm active epitaxy layer
- ~94ps timing resolution with ⁹⁰Sr beta source
- Wavefrom from RASER validated against experiment result
- ~73ps timing resolution from RASER simulation

Time Resolution of the 4H-SiC PIN Detector, Front. Phys.

Simulation of 3D silicon carbide detectors

3D SiC detector(left) and electric field from RASER(right)


Table 1. The simulation parameters and results for planar 4H-SiC, 3D-4H-SiC-7E, and 3D-4H-SiC-5E detectors with 500 V bias voltage.


SiC Detector Type	Column Spacing (µm)	Thickness (µm)	Rise Time (ns)	Pulse Height (mV)	Time Resolution (ps
Planar	100	100	0.38	13	77
3D-4H-SiC-7E	50	350	0.29	48	34
3D-4H-SiC-5E	50	350	0.32	53	25

Influence of parameters on 3D SiC detector timing resolution

- 3D SiC detector simulated in RASER
- ~25ps timing resolution of 5electrode SiC detector with ⁹⁰Sr beta source before irradiation
- timing resolution with different thickness, column spacing, number of electrodes

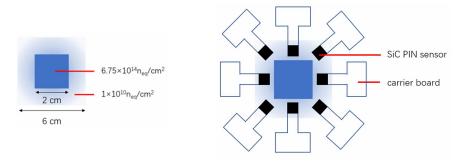
Simulation of silicon carbide LGAD

20000 LGAD 104 15000 CFD=0.5 Log(C) [a.u.] $\sigma = 35.0 \pm 0.2 \text{ ps}$ - Sim Events 10000 5000 10 5.1 5.2 5.3 5.4 5.5 5.6 4.8 4.9 100 200 300 ToA [ns] Reverse Bias Voltage [V]

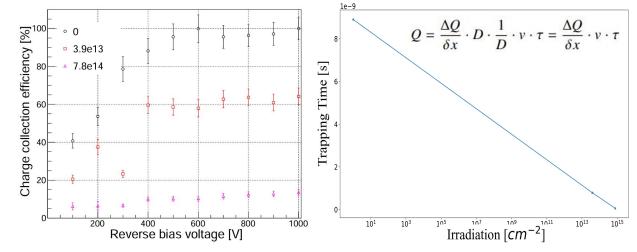
Cross section of SICAR(left) and layout(right)

CV curve(left) and timing resolution(right) from RASER

- Design and fabrication of SiC LGAD completed
- IV&CV curve simulated from RASER, depletion ~400V, breakdown ~3700V
- 800V bias voltage, timing resolution from RASER ~35ps


Design and simulation of a novel 4H-SiC LGAD timing device, RDTM

Application of planar SiC detectors in beam monitoring


- A new-built 1.6GeV proton beam line in China Spallation Neutron Source
- Beam monitoring system based on SiC detector

New 1.6GeV proton beam line

Schematic diagram of beam intensity (left) and detector placement(right)

CCE(left) and carrier trapping time(right) before and after irradiation

- The feasibility of SiC for beam monitoring has been demonstrated through irradiation experiment.
- RASER to calibrate SiC for long-term use, with the relationshop between carrier trapping time and irradiation dose.

- DEVSIM and NGSpice update in RASER
- Multiple detectors simulated in RASER, including irradiation study
- SiC PIN working in beam monitoring system, RASER calibration

RASER open-source code

