

CEPC Silicon Tracker Detector

Qi Yan

中國科學院為能物記術完備 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Introduction

- The CEPC tracker system includes several detectors: the Vertex Detector, Inner Silicon Tracker, Time Projection Chamber (TPC), and Outer Silicon Tracker. This presentation will focus on the Inner Silicon Tracker (ITK) and Outer Silicon Tracker (OTK).
- The ITK employs advanced sensor technologies, including HV-CMOS pixels and CMOS strips, to achieve precise position measurements for accurate particle trajectory determination.
- Both the ITK and OTK measure particle ionizations. Additionally, the OTK incorporates the AC-LGAD semiconductor detector for precision time measurement of charged particles, significantly enhancing particle identification capabilities.

Requirement

Inner silicon tracker (ITK)

- Spatial resolution:
 Barrel: σ_φ< 10 μm, σ_z< 50 μm
 Endcap: σ_φ< 10 μm, σ_r< 100 μm
- Material budget:
 <0.7% X₀ per layer
- Luminosity ~115×10³⁴ s⁻¹cm⁻² (Z-pole): A few ns timing resolution to tag 23ns bunches Hit rate ~2×10⁶ s⁻¹cm⁻² Radiation hard: TID >800 kGy
- Cost effectiveness:
 >20 m² area
- Outer silicon tracker (OTK)
 - Spatial resolution: σ_{φ} < 10 μ m
 - Timing resolution:
 σ_t<100 ps
 - Cost effectiveness:
 ~100 m² area

Technology Survey and our Choices for ITK Barrel

CMOS sensor technology:

- Cost-effective due to widespread use in the semiconductor industry
- Combine the active detection layer and the readout electronics into a single device
- HVCMOS pixels:
 - Large depletion depth (can achieve full depletion), large signal
 - Radiation hard
 - Relatively large capacitance, leading to increased noise and power consumption
- New COFFEE (HVMOS) pixels R&D for CEPC:
 - Utilizes 55nm process instead of the 180 nm used in ATLASPix3 More functionality and less power consumption
 - Pixel size: $34 \times 150 \ \mu m^2$
 - Array size: 512 rows × 128 columns
 - Wafer resistivity: $1k-2k \Omega \cdot cm$
 - Power consumption: ~200 mW/cm²

ATLASPix3

- TSI 180nm HVCMOS on 200 Ωcm substrate
- Pixel size $50\times150~\mu m^2$
- 372 rows \times 132 columns
- $20.2 \times 21 \text{ mm}^2$ reticle size
- Each pixel has 7-bit TOT + 10-bit timestamp
- Continuous / triggered readout with 8b10b / 64b66b coding
- Power consumption ~160 mW/cm².

R&D: COFFEE1 (HVCMOS) Pixels Development

COFFEE1: SMIC 55nm Low-Leakage process

- 1) Submitted in Oct 2022, received in Apr 2023
 - Low resistivity wafer. Not HV process, but with a similar deep n-well structure
- 2) Pixel size: $25 \times 150 \ \mu m^2$ or $50 \times 150 \ \mu m^2$

- Capacitance of a single pixel (25×150 μm²): 150~200 fF
- 4) Clear signal response to laser: charge of ~2400 e-

R&D: COFFEE2 (HVCMOS) Pixels Development

COFFEE2: SMIC 55nm HVCMOS process

Submitted in Aug 2023, received in Dec 2023

 HVCMOS process, with 1k Ω·cm wafer, without deep p-well structure

Chip performance test in on going

Three sections in the chip:

- 1: Passive diode arrays:
 - Including 6 different signal collection structures for studying diodes and charge sharing.
 - pixel size: $40 \times 80 \ \mu m^2$
- 2. Pixel arrays with diodes and in-pixel electronics:
 - Features 6 types of diodes and 3 types of in-pixel electronics.
 - pixel size: $40 \times 80 \ \mu m^2$
 - 3. Pixel arrays with peripheral digital readout
 - Used for validating readout strategies.
 - pixel size: $25 \times 25 \ \mu m^2$

CEPC ITK Barrel Baseline Design with HVCMOS Pixel Sensor, Modules and Staves

Mechanical and Cooling Design for ITK Barrel

Technology Survey and our Choices for ITK Endcap

CMOS sensor technology:

- Cost-effective due to widespread use in the semiconductor industry
- Combine the active detection layer and the readout electronics into a single device
- CMOS strips compared with CMOS pixels:
 - Less expensive and relatively lower power consumption
 - Simpler readout with fewer technical barriers
 - Comparable or even better spatial resolution
 - Negligible track ambiguity using specific design detector layout:

For example: the CEPC ITK endcap is designed with strip sensors with a 22.5° cross angle between 2 half-layers

CSC (CMOS) strip R&D for CEPC:

- Based on CHESS for ATLAS ITK strips
- Utilizes 150-180 nm process
- Strip pitch size: $20 \ \mu m$
- Wafer resistivity: >1k Ω ·cm
- Power consumption: <200 mW/cm²

CMOS Strip R&D Efforts and Results

CMOS strip layout and test - CHESS

layout

Contact and strip match design

ATLAS ITK ABCStar Chip design

Block diagram of current ABCStar.

H. Zhu DOI 10.1016/j.nima.2020.164520

Strip Sensor and Module Design for ITK Endcap

CEPC ITK Half-Endcap Design

Each half endcap is divided into 8 sectors: Each sector is entirely composed of rectangular modules, with minimal overlapping between sectors.

CEPC ITK Complete Endcap Design

Full ITK with 3 Barrels and 8 Endcaps

ITK Barrel and Endcap Detector Components

Barrels	Modules/Stave	Staves	Modules	Sensors	Sensor area
ITKB1	7	40	280	3920	1.6 m ²
ITKB2	10	58	580	8120	3.2 m ²
ITKB3	14	96	1344	18816	7.5 m ²
Total		194	2204	30856	12.3 m ²

Endcaps	Module Types	Sensors	Sensor area
ITKE1	5	1568	0.76 m ²
ITKE2	7	3168	1.53 m ²
ITKE3	15	9568	4.62 m ²
ITKE4	12	8416	4.06 m ²
Total	18	22720	10.97 m ²

The total power consumption of the chips (excluding other electronic components) is 24.6 kW for barrels and 21.9 kW for endcaps (200 mW/cm²).

CMOS Chip Parameters Summary

	HVCMOS Pixels (Barrel)	CMOS Strips (Endcap)	
Pixel Size (Strip Pitch Size)	$34 imes 150 \ \mu m^2$	20 µm	
Chip size	$2 \times 2 \text{ cm}^2$ (active area: 1.92x1.74 cm ²)	2.1×2.3 cm ² (active area: 2.05x2.05 cm ²)	
Array size (Strip number)	512 rows × 128 columns	1,024	
Spatial resolution	σ _φ ~8 μm, σ _z ~40 μm	σ _φ ~4.2 μm, σ _r ~21 μm	
Timing resolution	~3-5 ns	~3-5 ns	
Data size per hit	42 bit (14b BXID*, 7b+9b address, 6b TOT, 5b fine TDC, 1 polarity*)	32 bits (10b BXID, 10b address, 6b TOT, other 6 bits)	
Event rate / chip	??? (background?) up to 1.28 Gbps	Maximum~0.25Gbps (pair production)	
LV / HV	1.2V / 150 V	1.5V / 150 V	

* To be reduced

CMOS Chip Front-End Electronics

ITK Electronics Design

Cost Estimation

Category	ltem	Total (10k CNY)	Unit cost (CNY)	Unit	Quantity	Note
Barrels (HVCMOS Pixels): 12.3 m ² sensor area						
Sensor chip	Sensor chip	1278	18,000	Wafer	710	assume 50% yield
	Hybrid PCB	154	700	Piece	2204	
	Optical fibre	44	200	20m	2204	
Common	Optical connector	441	2,000	Piece	2204	
	PCB connector	22	100	Piece	2204	
	Power cable	88	400	20m	2204	
Total		2027				
	Endcaps (CMOS Stirps): 10.97 m ² sensor area					
CMOS Strip Chip	Sensor chip	851.2	8000	Wafer	1064	assume <mark>50%</mark> yield
	Hybrid Flex	118.72	700	Piece	1696	
	Optical fibre	0.2	200	20m	10	
Common	Optical connector	339.2	2,000	Piece	1696	
cicculonics	Hybrid connector	16.96	100	Piece	1696	
	Power cable	0.4	400	20m	10	
Total		1326.68				

Technology Survey and Our Choices for OTK

- The read-out electronics is connected to the N++ layer
- Time resolution ~ 30ps
- Position resolution: pixel size/ $\sqrt{12}$
- Metal AC-pads separated from the N+ ۲ layer by a thin dielectric (Si_3N_4, SiO_2)
- Time resolution ~ 30ps
- Position resolution: 5~10 um •

- High time precision ASIC:
 - 40-48 bit TDC •
 - Low power consumption •
 - Fast timing •

3000

R&D: AC-LGAD Sensors Development at IHEP

Pixels AC-LGAD:

- Position information: 1 layer
- Pitch size 2000 μm, pad size 1000 μm
- Different N+ dose :
 - 10P, 5P, 1P, 0.5P, and 0.2P

Strips AC-LGAD:

- Position information: 2 layer
- Strip length 5.6mm, width 100 μm
- Different pitch size:
 - 150 μm , 200 μm , and 250 μm

AC-LGAD Performance: Time and Spatial Resolution

OTK Barrel Design

OTK Endcap Design

R1: 52.36 mm-70.69 mm

OTK Front End Electronics

TOA for arrival time

TOT for charge measurement and time walk correction

OTK Electronics Design

- Provide LV and HV for module independently
- Primary aggregation adapts the data rate between the ASIC and LpGBT_like interface
- Flexible connection between primary and secondary stages
- Optical fiber connection between secondary stage and BEE

Full Tracker Performance from Simulation: Momentum Resolution

HVCMOS Pixels Research Team in China

IHEP

- Jianchun Wang, Yiming Li, Yang Zhou, Weiguo Lu, Mei Zhao, Zijun Xu, Xiongbo Yan, Jinyu Fu (Postdoc & Students) Zhiyu Xiang, Kunyu Xie, Xiaojie Jiang, Shuqi Sheng, …
- Shandong U
 - Meng Wang, (Students) Leyi Li, Qinglin Geng
- Zhejiang U
 - Hongbo Zhu, (Students) Jianpeng Deng, Pengxu Li
- Hunan U
 - Zhuojun Chen, Jiesheng Yu
- Northwestern Polytechnical University
 - Xiaomin Wei, (Students) Yinghua He ...
- Dalian Minzu
 - Zhan Shi, (Students)Yang Chen, Yujie Wang
- Nanjing U
 - Lei Zhang, (Student) Xiaoxu Zhang

CMOS Strips Research Team in China

IHEP

- Staff: Xin Shi, Qi Yan, Weiguo Lu, Mei Zhao, Xiongbo Yan, Jinyu Fu
- Postdoc & Students: Chengwei Wang, Yuxing Cui, Zhan Li, Sen Zhao, Chenxi Fu, Kaibo Xie, Yihan Zhang, Shoudong Luo

Zhejiang U

Shoudong Luo

Working Plan

HVCMOS Pixel Chip - R&D

- COFFEE3: Key module validation, small chip like COFFEE2
- COFFEE4: Quarter chip, to validate full column readout
- COFFEE5: Full size and full function chip

CMOS Strip Chip - R&D

- CSC1: Passive CMOS strip sensor and seperate front-end electronics CMOS circuit
- CSC2: Small size and large pitch prototype
- CSC3: Full size and full function chip

Module Assembly - R&D

- Assembly
- Electrical Testing

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review