

CEPC Gaseous Track Detector

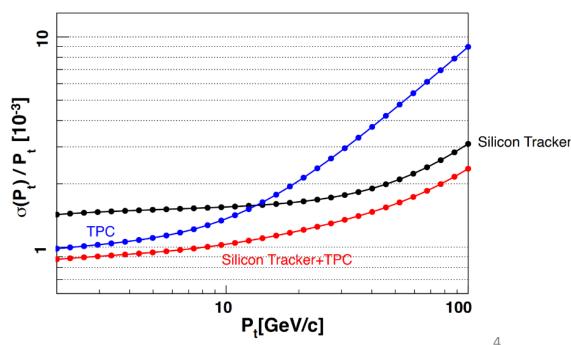
Huirong Qi and Linghui Wu

On behalf the gaseous track detector group

Content

- Motivation and physics requirements
- Technology survey and our choices
- Technical challenges and R&D efforts
- Detailed design including electronics, cooling and mechanics
- Performance from simulation
- Research team and working plan
- Summary

Motivation


- This talk relates to the CEPC Physics and Detector Ref-TDR.
 - Chapter 5: Gaseous tracker
 - Draft of content listed →

Chapter	5 Gas	eous trackers
5.1	Physics	requirements and detection technology
	5.1.1	Physics requirements of Higgs and Tera-Z
	5.1.2	Technology choice and the baseline track detector .
5.2	Pixelate	ed readout TPC detection
	5.2.1	TPC detector and readout electronics
	5.2.2	Mechanical and cooling design
	5.2.3	Challenges and critical R&D
5.3	Perform	nance of TPC tracker
	5.3.1	Overall of simulation framework
	5.3.2	Spatial resolution and particle identification
	5.3.3	Potential for resolution improvement
5.4	Alterna	tive track detector of Drift Chamber in Tera-Z
	5.4.1	PID for high luminosity Z pole at 2T
	5.4.2	Performance and critical R&D
5.5	Cost es	timation

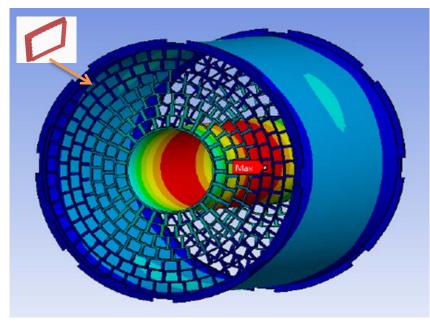
Physics requirement - 1

- Phys. Requirements of the track detector
 - Thousands of hits with high spatial resolution compatible with PFA algorithm (low X_0)
- Beneficial for jet & differential at higher energy
 - Highly requirements for excellent JOI & PID resolution (in Jets): Provide dE/dx + dN/dx ~ 2-3%
 - BMR < 4% & pursue 3%

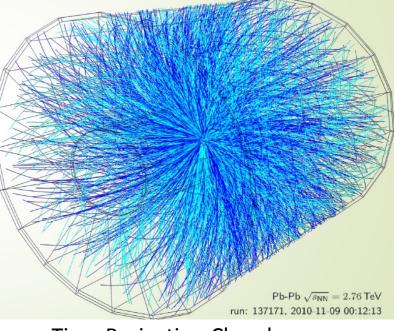
	Processes @ c.m.s.	Domain	Total Det. Performance	Sub-D	
H->ss/cc/sb	cc/sb vvH @ 240 GeV Higgs PFA + JOI (Jet origin id		PFA + JOI (Jet origin id)	All sub-D, especially VTX	
H->inv	qqH	Higgs/NP	PFA	All	
Vcb	WW@ 240/160 GeV Flavor JOI + Particle (lepton) id		JOI + Particle (lepton) id	All	
W fusion Xsec			All		
$\alpha_{\scriptscriptstyle S}$			PFA: Tau & Tau final state id	ECAL + Tracker material	
		PFA + Particle (Kaon) id	All, especially Tracker & ToF		
Weak mixing angle	Z	EW	JOI	All	
Higgs recoil	IIH	IIH Higgs Leptons id, track dP/P		Tracker, All	
H->bb, cc, gg	vvH	Higgs	PFA + JOI	All	
	qqH	Higgs	PFA + JOI + Color Singlet id	All	
H->di muon	on qqH Higgs PFA		PFA, Leptons id	Calo, All	
H->di photon qqH Higgs		PFA, Photons id	ECAL, All		
W mass & Width	WW@160 GeV	EW	Beam energy	NAN	
Top mass & Width ttbar@360 GeV		EW	Beam energy	NAN	
Bs->vvPhi	Z	Flavor	Object in jets; MET	All	
Bc->tauv	Z	Flavor	- All		
B0->2 pi0 Z Flavor Particle/pi-0 in jets		ECAL			

Physics benchmark for reference TDR

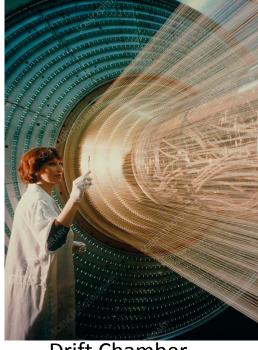
Physics requirement - 2


- CEPC operation stages: 10-years Higgs → 2-years Z pole → 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Detector should primarily meet Higgs and run at Z also.

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2×10^7 Gy [11].



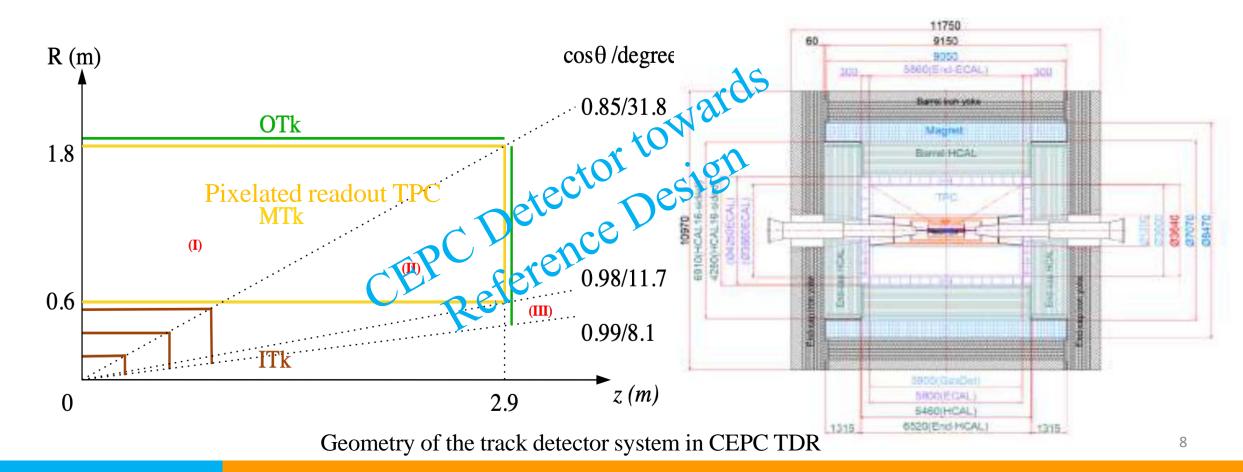
Technology survey and our choices


- 3D high precision resolution track reconstruction with the Ultra light material budget
 - High precision resolution (~100 µm) with thousands hits per track
 - High momentum resolution (~10⁻⁴ GeV/c) and High capabilities for Particle Identification (~3%)
 - Utilize the timing of drift in the z-direction (nano-second)
 - A magnetic field parallel to the electric field direction (Higgs: 3T, Tera-Z: 2T)
 - Easily installation and replacement modular design

Modular design

Time Projection Chamber

Drift Chamber


Technology survey and our choices

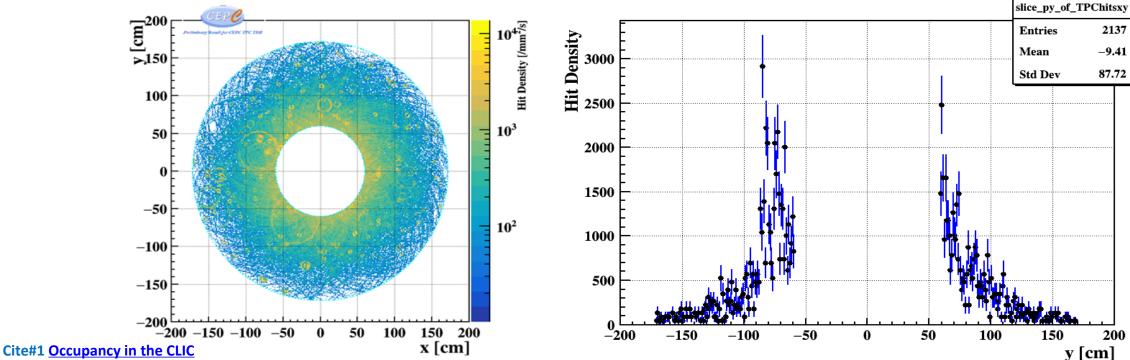
- Considering the technical challenges, performance, risk of detector
 - Pixelated readout TPC is as the baseline track detector in CEPC ref-TDR.
 - DC is as the alternative track detector at Tera-Z.

	ТРС	DC
Material budget of barrel		
Number of hits per track		
Modular readout design		0000
Momentum resolution at Higgs		Mar 1000
Hit separation in z		1500000
xy-resolution		
Overall installation		
Drift time		
PID at Tera-Z in 2T		
Distortion at Tera-Z in 2T		

Baseline track detector: Pixelated TPC

- The track detector system's geometry finalized.
 - All of physics simulation used the updated geometries for CEPC TDR document
 - Silicon combined with gaseous chamber as the tracker and PID
 - Baseline: Pixelated readout TPC as the main track (MTK) from radius of 0.6m to 1.8m

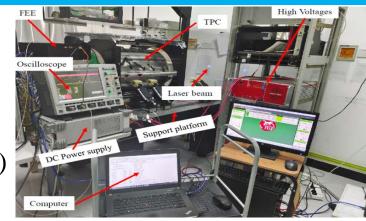
Technical challenges and R&D efforts

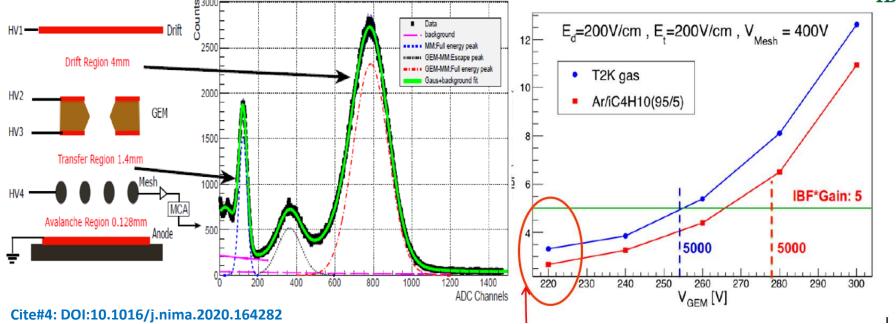

Main Technical Challenges

• Performance studies of the pixelated readout TPC (Baseline)

- Performance studies of DC (Alternative at Tera-Z)
 - dN/dx for PID $\sqrt{}$
 - High prevision time resolution (ns) FEE $\sqrt{}$
 - Risk the 5.8m wires and tension (ongoing)

Occupancy/hits desnity R&D and results

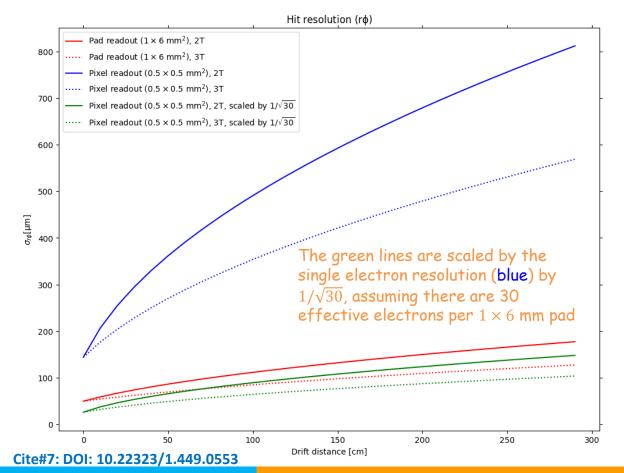

- Low voxel occupancy: 1E-5 to 1E-6 (cite#1)
- At 2 E36 with Physics event only, even bunch distribution(cite#2).
 - Pixelated readout much **LOWER** inner most occupancy (**0.6m inner radius**)
 - Pixelated readout can easily handle a high hits rate at Z pole. (cite#3)
 - The data at the inner radius @40M BX Z pole@1 Module ~0.05Gbps(Maximum).

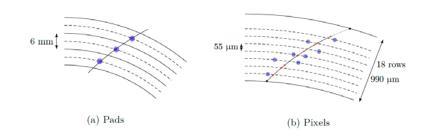

Cite#2 https://doi.org/10.1088/1748-0221/12/07/P07005
Cite#3 GridPix detectors

Ion back flow R&D and results

- Achievement by far from TPC module and prototype:
 - Supression ions hybrid TPC module
 - **IBF** × Gain ~1 at Gain=2000 validation with TPC module
 - Spatial resolution of $\sigma_{ro} \leq 100 \mu m$ by TPC prototype
 - dE/dx for PID: <3.6% (as expected for CEPC baseline detector concept)
 - Graphene foil suppression (on going @ Shangdong University)

0.0018 ⊕ 0.0016 ₫ 0.0014 PA Voltage = 650V 0.0012 $\frac{1}{2}$ 0. 0010 E 0. 0008 0.0006 Total gain


Cite#5: CERN-OPEN-2021-012. 2021 Cite#6: IJMPA 36.22 (20212142015


Hybrid TPC module and Double-mesh detector module

Tera-Z at 2T R&D and results

Estimation of the spatial resolution using pixelated readout.

- The granularity and the transverse diffusion considered.
- TPC can work well at the 2T B-field without any $\mathbf{E} \times \mathbf{B}$ effect.
- Distortion will be considered proportionally at Z (Backup slide)

Pad readout:

$$\sigma_{r\phi}^{\rm pad} = \sqrt{(\sigma_{r\phi 0}^{\rm pad})^2 + \sigma_{\phi 0}^2 \sin^2(\phi_{\rm track}) + L \frac{D_{r\phi}^2}{N_{\rm eff}} \sin(\theta_{\rm track}) \left(\frac{6 \text{ mm}}{h_{\rm pad}}\right) \left(\frac{4.0 \text{ T}}{B}\right)^2}$$

-
$$\phi_{\text{track}} = 0^{\circ}$$
, $\theta_{\text{track}} = 90^{\circ}$

-
$$\sigma_{r\phi 0} = 50 \mu m$$

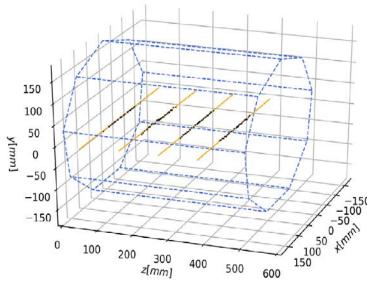
-
$$N_{eff} = 22$$

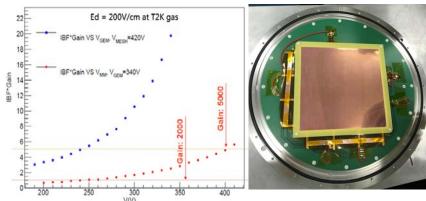
-
$$D_{r\phi} = 46.9 \mu \text{m} / \sqrt{\text{cm}} (2\text{T}), 32.3 \mu \text{m} / \sqrt{\text{cm}} (3\text{T})$$

Pixel readout:

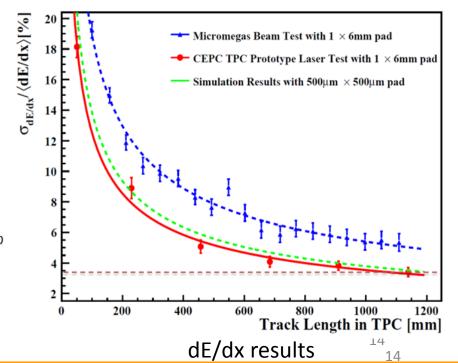
$$\sigma_r^{\text{pixel}} = \sigma_{r\phi}^{\text{pixel}} = \sqrt{(\sigma_{r\phi 0}^{\text{pixel}})^2 + LD_{r\phi}^2 \left(\frac{10 \text{ T}}{B}\right)^2}$$

$$-\sigma_{r\phi 0} = \frac{500}{\sqrt{12}} = 144 \mu m$$

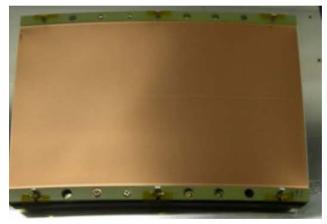

-
$$D_{r\phi} = 46.9 \mu \text{m} / \sqrt{\text{cm}} (2\text{T}), 32.3 \mu \text{m} / \sqrt{\text{cm}} (3\text{T})$$

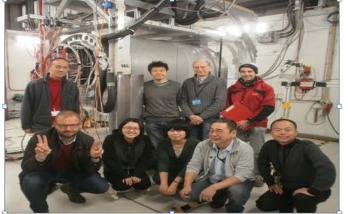

13

TPC prototype R&D efforts and results

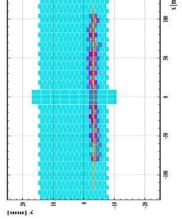

- CEPC TPC detector prototyping roadmap:
 - From TPC module to **TPC prototype R&D for Higgs and Tera-Z**
 - Easy-to-install modular design of Pixelated readout TPC for CEPC TDR
- Achievement by far:
 - IBF × Gain ~1 @ G=2000 validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \,\mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

Ion suppression TPC module R&D

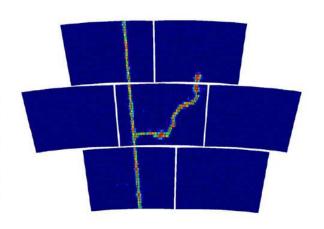


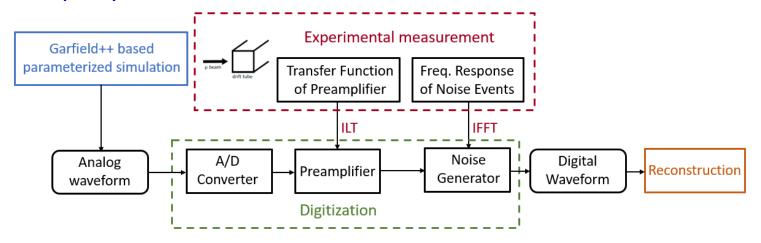

TPC prototype with integrated 266nm UV laser

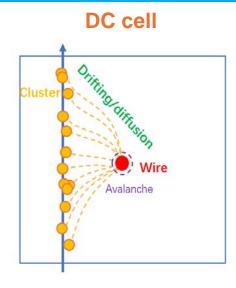
Activity international collaboration

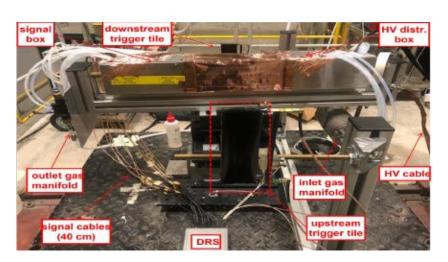

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$
 - Collaboration implement improvements in **a pixelated readout TPC for CEPC TDR**

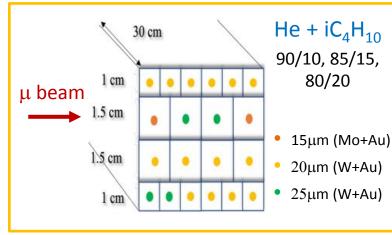

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

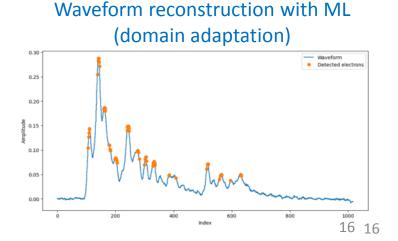




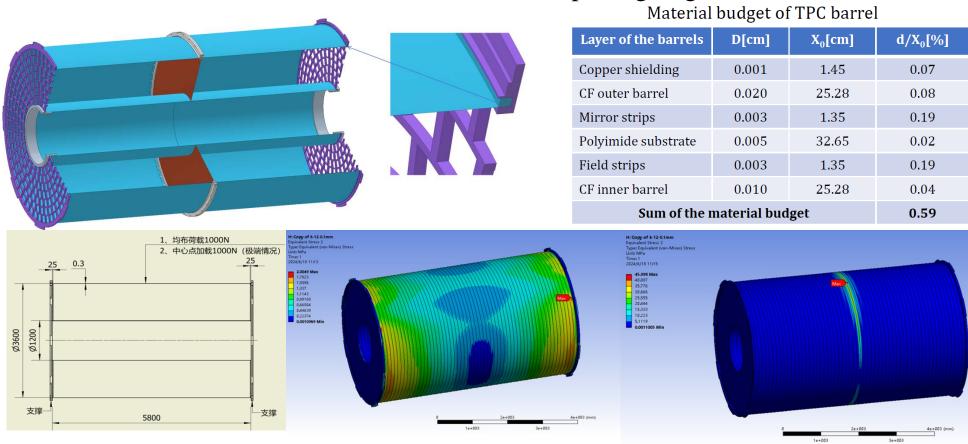



DC R&D efforts and results

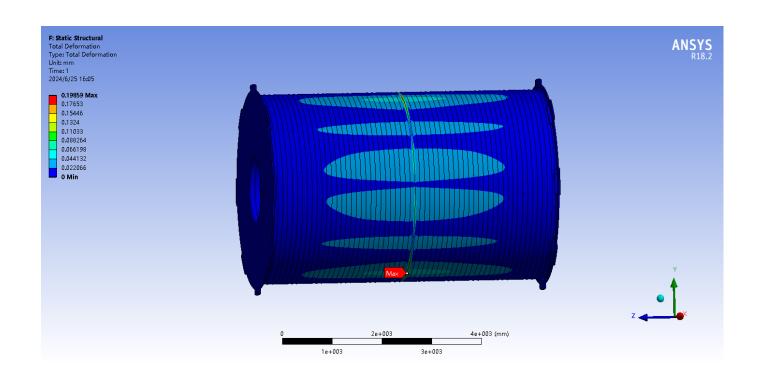

Develop sophisticated software tools for DC PID simulation

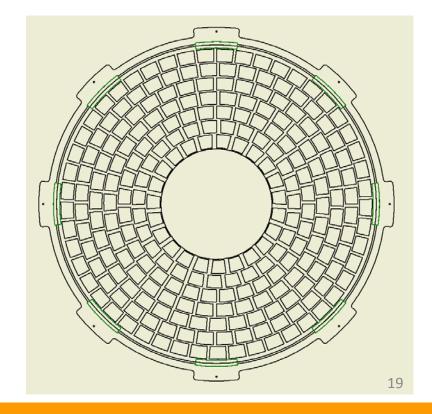


International collaboration of the beam test



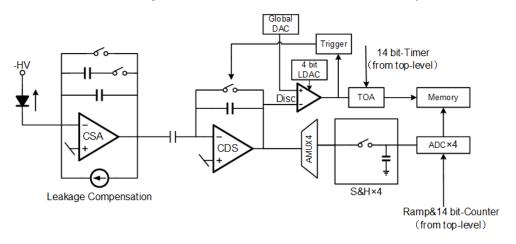
Detailed design and performance of Baseline: TPC

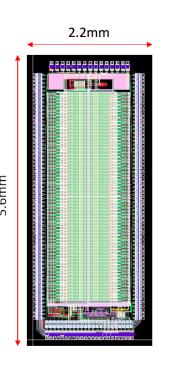

Detailed design of mechanics and cooling


- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- Ultra-light material of the TPC barrel: 0.59% X₀ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
- Optimization of the connection back frame of the endcap (on going)

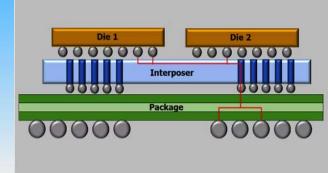
FEA analysis results of TPC

- Ultra-light material of the TPC barrel
 - High-strength carbon fiber material QM55
 - For thin-walled structures, the shear stresses (剪切应力) from deformations of 0.1mm may occur that exceed the shear stress of the carbon fiber to lead a risk of fracture.

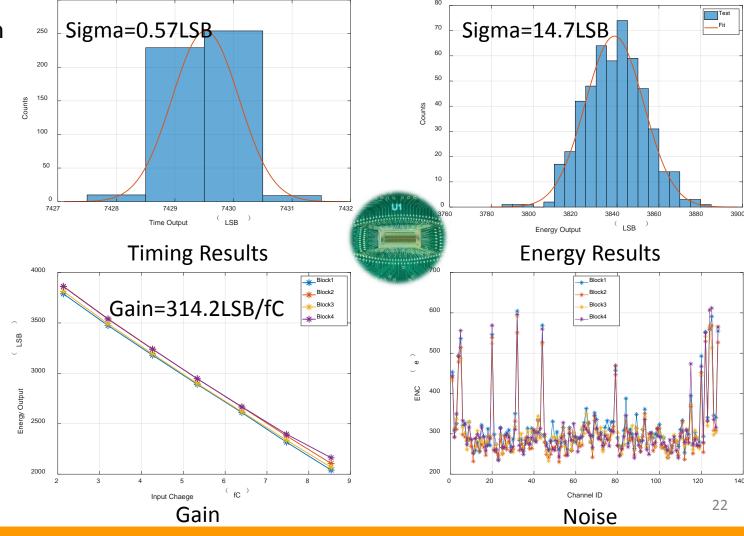



Detailed design of the readout

Parameters	Higgs run	Z pole run	
B-field	3.0T	2.0T	
Readout size (mm)/All channels	0.5 mm $\times 0.5$ mm $/2\times 3\times 10^7$	0.5 mm $\times 0.5$ mm $/2\times 3\times 10^7$	
Material budget barrel (X ₀)	0.59%	0.59%	
Material budget endcap (X ₀)	15%	15%	
Points per track in rφ	2300	2300	
σ in rφ	120μm (full drift)	400μm (full drift) w. distortion	
σ in z	≃ 0.1 – 0.4 mm(for zero – full drift)	≃ 0.2 – 0.8 mm(for zero – full drift)	
2-hit separation in rφ	0.5mm	0.5mm	
K/π separation power @20GeV	3 σ	3 σ	
dE/dx	< 3.0%	< 3.0%	
Momentum resolution normalised:	a = 1.9 e -5	a = 4.2 e -5	
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.8 e -3	b = 1.2 e -3	


Detailed design of electronics and BEC

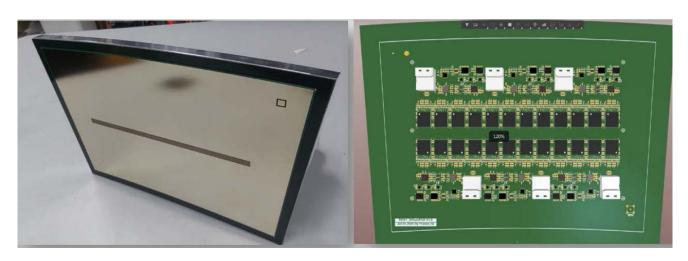
- Pixel Readout Electronics
 - Multi-ROIC chips + Interposer PCB as RDL
 - High metal coverage
 - Four-side buttable
- Low power Energy/Timing measurement ASIC
 - Low noise: ~100 e noise
 - 5 ns drift time resolution
 - Low power: 100 mW/cm2 (250uW/ch)

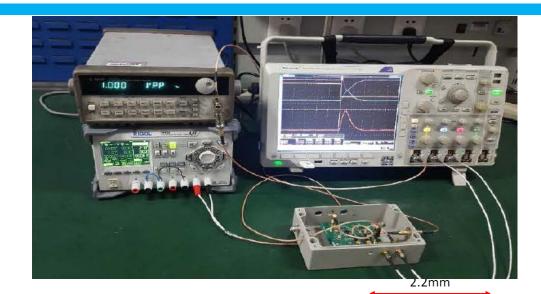


Detailed design of electronics and BEC

■ FEE ASIC: TEPIX—Test Results in May

- Power Consumption ~ 0.5mW/ch
- Timing \sim <1LSB(10ns)
- Noise ~ < 300e (even high gain)


Parameter	Spec	
Number of channels	128	
Power Consumption	Analog<30mW	
Power Consumption	Digital<30mW	
ENC	~300 e(high gain)	
Dunamic Bango	25fC(high gain)	
Dynamic Range	150fC(low gain)	
INL	<1%	
Time Resolution	<10ns	



Validation of TPC prototype

R&D on Pixelated TPC readout for CEPC TDR

- Pixelated readout TPC ASIC chip developed and 2nd
 prototype wafer has done and tested.
- The TOA and TOT can be selected as the initiation function in the ASIC chip
 - $500\mu \text{m} \times 500\mu \text{m}$ pixel readout designed
 - Time resolution: 14bit (5ns bin)
 - Power consumption: ~100mW/cm²
- Prototyping pixelated readout TPC detector
 - The validation of the prototype assembled for beam test

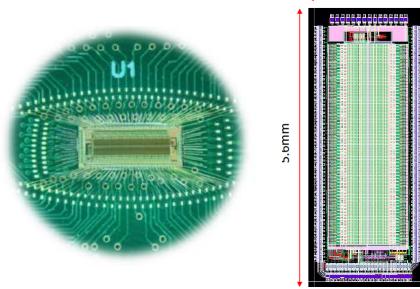
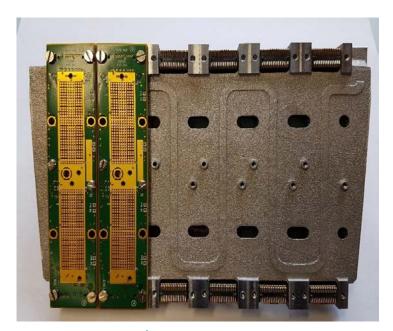


Photo and layout of ASIC Chip R&D for TPC

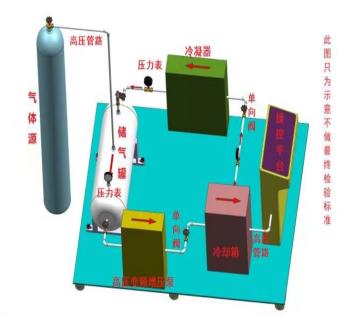
Detailed design of electronics and BEC

- Power consumption relative with the high granularity readout
 - Pad readout TPC@1mm × 6mm pad size
 - Total channels: 10^6 ; Total power: <10 kW using 2-phase CO_2 cooling
 - Pixelated readout TPC at the endcap
 - Total power: <10 kW
 - 2-Phase CO₂ cooling
 - <100mW/cm²

2160jum	1950µm	LVDS drives
2		SARADC

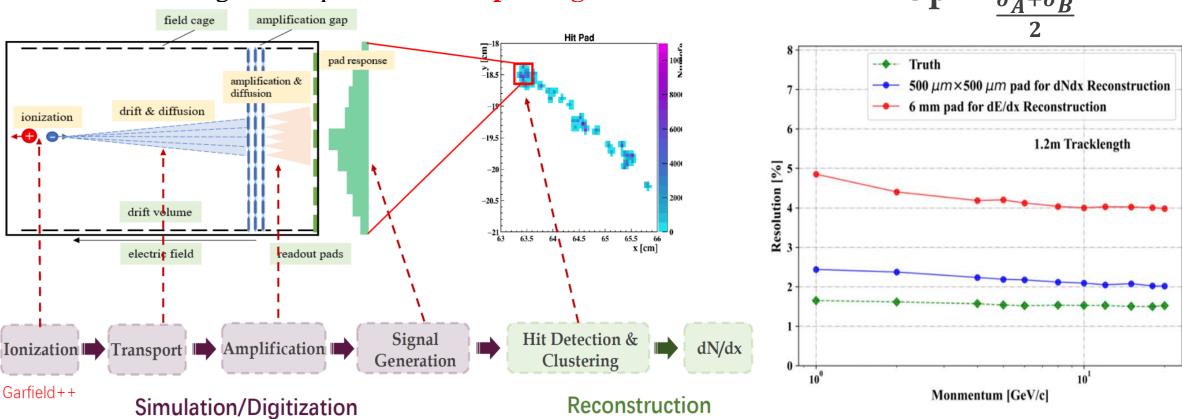


	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm²
No. of Channels	5.7× 10 ⁵	1-2 × 10 ⁶	5.7 × 10 ⁵	2 x×10 ⁶
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm


DOI: 10.1088/1748-0221/15/02/T02001 DOI: 10.1088/1748-0221/15/05/P05005

Detailed design of mechanic and cooling

- Readout electronics will require a cooling system. 2-phase CO2-cooling is a very interesting candidate.
 - A fully integrated AFTER-based solution tested on 7 Micromegas modules during a test beam.
- To optimize the cooling performance and the material budget **3D-printing of aluminum** is an attractive possibility for producing the complex structures required.
 - A prototype for a full module has been **validated at the international collaboration**.

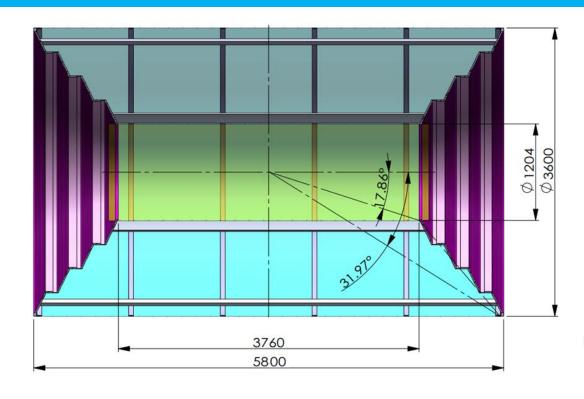

Cite#8: DOI 10.48550/arXiv.1403.7717 Cite#9: DOI 10.1088/1748-0221/10/08/P08001

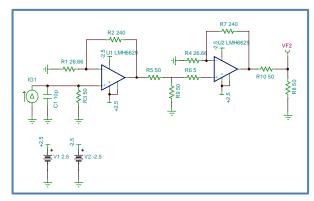
Cite#10: DOI 10.1088/1742-6596/2374/1/012149

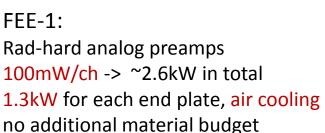
Performance from simulation

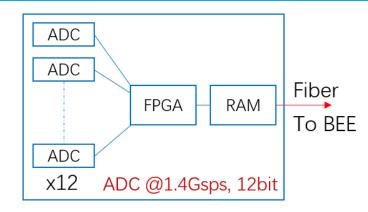
- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 50cm drift length can be achieved

• dN/dx has significant potential for improving PID resolution

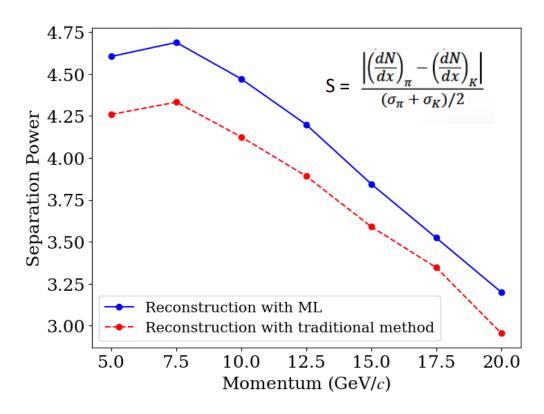



Cite#11: DOI: 10.22323/1.449.0553


Cite#12: EPS-HEP 2023 talk by Yue Chang


Detailed design and performance of Alternative at Tera-Z: DC

Detailed design of DC at Tera-Z


FEE-2:
ADC and FPGA board for data readout and buffering, located in low dose region
0.5Gbps/12 channels

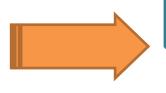
- **CF** frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder
- Length: 5800 mm; Outer diameter: 3600 mm; Inner diameter: 1200 mm
- Thickness of each end plate: 20 mm, weight: 880 kg
- Gas mixture: He + iC_4H_{10} (90/10)
- Cell size: 18mm x 18mm, number of cells: 26483
- Material: 0.16% X₀ for Gas+Wires, 0.21%X₀ for inner and outer cylinders
- Finite element analysis: Endplate deformation 2.7mm, CF frame deformation 1.1mm

PID performance of DC

- Full simulation study
 - Garfield++ based parameterized simulation implemented
 - Parameters of preamplifier and noises from experiment
 - Reconstruction with both traditional method and machine learning developed
- Better than 3σ of K/π separation power achieved up to 20GeV/c

K/π separation power vs. momentum

~10% improvement for reconstruction with ML


Research Team

Core of the research team

- IHEP: Huirong Qi, Linghui Wu, Guang Zhao, Mingyi Dong, Yue Chang, Xin She, Jinxian Zhang, Junsong Zhang
- Tsinghua: Zhi Deng, Canwen Liu, Guanghua Gong, Feng He, Jianmeng Dong, Yanxiao Yang
- Collaboration of the research team
 - TPC: CIAE, Shandong University, Nankai University, Zhengzhou University and Liaoning University
 - DC: Wuhan University, Jilin University
 - DRD1 collaboration and LCTPC collaboration
- Organization of team
 - Regular weekly meeting from April 2024
 - Collaboration regular meeting with some international groups

Shared editing chapter from overleaf

Working plan

Short term working plan

- Optimization of the detector for CEPC TDR
- Prototyping R&D and validation using FEE
 - mechanics, manufacturing, beam testing
- Performance of the simulation and optimize deep learning algorithm

Long term working plan


- Development of the pixelated TPC prototype with low power consumption FEE ASIC
 - Beam test collaborated with LCTPC collaboration
- Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion along the drift length

Summary

 TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e+e- colliders, espial to the high luminosity Z pole run at future e+e- collider. DC will be as the alternative detector at Tera-Z.

- Pixelated TPC is choose as the baseline detector as main traker in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4 at IHEP. Some validation of TPC prototype have been studies.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences. All will input to CEPC ref-TDR in next some months.

Thank you for your attention!

