

CEPC HCAL Detector

Jianbei Liu, Boxiang Yu on behalf of CEPC calorimeter group

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics & BEC
- Performance from simulation
- Research team and working plan
- Summary

Introduction

This talk is about the design and development of the CEPC Hadron calorimeter (HCAL)

HCAL have two options:

- AHCAL
 - GS-AHCAL —>Glass scintillator
 - PS-AHCAL —>Plastic scintillator
- SDHCAL base on RPC

The CEPC HCAL option

- HCAL: PFA calorimeter (High granularity calorimeter)
- Hardronic energy resolution: <60%/√E</p>
- BMR requirements: 3~4% (H->gg)
- Nuclear interaction length: $\geq 6 \lambda_i$
- Detection efficiency of scintillator cell for MIPS : >95%

Technology survey and our choices

- HCAL have three options: GS-AHCAL, PS-AHCAL and RPC-SDHCAL
- AHCAL-GS:
 - Scintillator cell size: 40×40×10 mm³
 - GS cell response of MIP: ~80 p.e.
 - BMR: ~3.4% (H->gg)
- AHCAL-PS:
 - Scintillator cell size: 40×40×3 mm³
 - A 40 layers prototype was constructed and beam tested.
 - Beam test results:
 - Energy resolution: $\frac{58.4\%}{\sqrt{E}} \oplus 1.7\%$
 - Energy linearity < 1.5%
 - BMR: ~3.7% (H->gg)
- RPC-SDHCAL:
 - Readout size: 10×10 mm² (Too much)
 - Beamtest MIP detection efficiency: >96%
 - BMR: ~3.6% (H->gg)

Main Technical Challenges

- The biggest challenge: high granularity, 3D, large scale HCAL
- Technical innovations created to meet the challenge
 - Technique for large scale production of high quality scintillator tiles in a low-cost way
 - Highly integrated, fully embedded and scalable electronics with a parallel readout design for high rate application
 - The design and installation of the big size and heavy weight detector structure.

GS-AHCAL proposed

PFA-oriented detector: the CEPC 4th conceptual design

- Hadronic calorimeter (HCAL) with glass scintillator tiles
- Requires glass scintillator: dense, high light yield, low cost
- Expect to significantly improve hadronic energy resolution
 - Aim at improving BMR $4\% \rightarrow 3\%$

R&D activities for glass scintillator HCAL

- HCAL design, simulation studies and hardware developments
- Glass scintillator tiles: testing with cosmics/sources/beams
 - Key requirement: MIP response ~100 p.e. in 10 mm thickness
- PFA optimization and physics performance studies

GS-AHCAL R&D **Simulation Studies and Beamtest**

Geant4 simulation studies

- Geometry refer to Scint-Steel AHCAL: **Plastic scintillator->Glass scintillator**
- Better energy resolution for hadrons
- **GS-AHCAL** design optimizations:
 - Density: 6 g/cm³
 - Thickness: 10 mm
- Beamtest of glass tiles
 - MIP response:
 - 71-96 p.e./MIP in 40*40*10 cm³
 - \rightarrow promising to achieve the goal
 - Readout by 6mm*6mm SiPM

Glass scintillator tiles

Glass scintillator HCAL

HCAL energy resolution

54809

71.8/33

 125 ± 0.0

100

m_{visible} [GeV]

120

140

 4.23 ± 0.02

60×10⁻³

GeV

20

240GeV.5.6 ab ZH, $Z \rightarrow vv$, $H \rightarrow qq$

Constant 0.0458 ± 0.0003

BMR 3.38%

Entries

 χ^2 / ndf

Mean Sigma

R&D **PS AHCAL tiles production and wrapping**

Developed an injection molding technique to produce large amounts of PS tiles in a cost-effective and efficient way

Developed an automatic packaging machine to fast wrap scintillator tiles with ESR foils in large quantities.

R&D **PS AHCAL prototype assembling**

Developed a procedure dedicated to fitting scintillator tiles onto the HBU boards

Absorber installation

Actvie layer installation

2024-7-27

R&D Beam tests at CERN

- e^{\pm} : 0.5-250 GeV/c
- π[±] : 1-120 GeV/c
- High energy μ for calibration

65 million events collected in total

PS-AHCAL Energy linearity and resolution for pions

• Energy linearity: <1.5%

• Energy resolution is $\frac{58.4\%}{\sqrt{E}} \oplus 1.7\%$

10 – 80 GeV

R&D

BMR Simulation result

2024-7-27

Single layer structure of CEPC AHCAL

CEPC PS-AHCAL

5

AHCAL Barrel Geometry design in CEPCSW

In order to decrease dead area, an odd size scintillator has been introduced

Dead area: 0.75% caused by uninstrumented region 1.4% caused by gap between scintllators 4.5% cause by supporting structure

AHCAL Barrel can initially work in CEPCSW

Hitmap in xy plane using muon scan

AHCAL Endcap Geometry design in CEPCSW

Barrel HCAL requirements for mechanical design

- 1/16 section
- Totally 48 layers
- Thickness: 1315mm
- Thickness of each layer: 27.4mm

Requirement for physics

● The dead zone area: ≤1%

Requirement for mechanics

- Stiffness: Each layer deformation is < 0.5mm (including manufacturing tolerance, installation tolerance, self gravity)
- Strength: The stress is lower than material allowable stress

Requirement for layout

- Totally 16 equal divisions
- Distance between two symmetry outer edges is 6910mm
- Distance between two symmetry inner edges is 4280mm
- Total length: 6460mm

Barrel HCAL preliminary mechanical design

Based on PS-AHCAL

• Cell size: 4cm×4cm×3mm

Channel number

Channels for 1/16 section : 211.2 k
Total channels: 3.38 M

Weight

- Weight of 1/16 section: **59.4 tons**
- Total weight: **951 tons**

CEPC PS-AHCAL

Barrel HCAL preliminary mechanical design

Absorption plate

Trapezoid plate

C: 全模型 Fixed Support Time: 1. s 2024/7/24 12:18 Fixed Support

One section assembling condition under gravity • Max. stress: 4.6 MPa. Max. deformation: 0.15mm

0.1012 0.08437 0.0504376 0.067502 0.050627 0.033751 0.016876

General model: Fix support applied on the top surface of each end

• Each two divisions are connected by 4 edge sealings

Mechanic installation scheme

HCAL endcap mechanic preliminary design

The center support drum: **50mm thick**

HCAL endcap scintillator preliminary arrangement

■1/16 session : 73 Line scintillator

■The basic size of scintillator 40mm×40mm×3mm

At the edge, the trapezoidal scintillator is used.

■The dead area: <1%

Barrel HCAL preliminary cooling design

Requirement for cooling

- Heat power: **15mW/channel**
- Temperature difference within one channel: ±0.1°C
- Temperature difference between different channels: ±1.5°C

Fluid flow (fluent) simulation

- Water inlet temperature: 21°C
- Surrounding temperature:25°C

Temperature distribution along thickness direction

- Max. temperature: 25.58°C
- Model including absorption layer, cooling pipe, cover plate, PCB, PS, chip
- Both inlet and outlet are 21°C

Model

HCAL endcap preliminary cooling design

- Diameter of cooling Pipe: 5mm
- Each 1/16 session has one cooling pipe .
- The cooling effect is simulated for 1/4 detection area.
 - Heat source: 15mw/ch
 - Water temperature: 25 °C

HCAL endcap cooling calculation

Water temperature: **25 °C** Temperature range: **25 °C<T<26 °C** Temperature rise: **<1 °C**

Electronics diagram for HCAL

- Energy Measurement: ASIC for ECAL & HCAL
- Data transmission: common data platform (see electronics report)
- Trigger mode: FEE triggerless readout

Readout electronics for HCAL

AHCAL Research Team

Detector:

Staff(10): Jianbei Liu, Haijun Yang, Yong Liu, Shen Qian, Yunlong Zhang, Shu Li, Boxiang Yu, Hao Liu, Jiechen Jiang, Jiaxuan Wang Student(5): Dejing Du, Siyuan Song, Jiyuan Chen, Hongbin Diao, Yanyun Duan

Electronics:

Staff(5):Wei Wei, Jinfan Chang, XiongBo Yan, Anshun Zhou, Zhongtao Shen,

Mechanics:

Staff(**3**):Quan Ji, Yatian Pei, Junsong Zhang Institution: USTC, SJTU, IHEP

Working plan

Detector

- R&D of glass scintillator
- Test odd shape plastic scintillator

Electronics

- AISC chips R&D
- Compeleteing electronics design

Mechanic

- Optimization of the mechanic design.
- Optimization of the cooling design.

Simulation

- Optimization AHCAL geometric settings in CEPCSW .
- AHCAL full simulation under CEPCSW

Detector

- GS of GS-AHCAL was develped and tested, GS-AHCAL was simulated.
- PS-AHCAL prototype has been constructed and beam tested.

Mechanic

- The preliminary design of AHCAL mechanic include barrel and endcap has been completed.
- The preliminary design of the cooling has been completed.

Simulation

- AHCAL geometric settings in CEPCSW is ready.
- AHCAL full simulation in CEPCSW will been soon.

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Backup

Max. stress position (a)Deformation distribution in top absorption layer

- Max. stress occurred at the transition zone of edge sealings between fix support and no support. (Solving it by changing this zone by high strength steel or changing the structure of this zone)
- Relative deformation: 0.13mm of (a) and 0.11mm of (b)
- Deformation of V2 is smaller than V1, installation scheme of V2 is easier than V1

CEPCSW AHCAL Barrel Geometry

- total distance in xy plane: 40.3mm
- total thickness: 3.2mm
- Absorber: 2mm Steel235

HCAL Endcap Set in CEPCSW

From Jiyuan

- Active layer: 16 trapezoidal modules constitute a regular hexadecagon
- Absorber : 4 fan-shaped areas constitute the circular ring,

Size:

- Inner radius: 400 mm
- Outter radius : 3455 mm
- Thickness: 1315 mm
- Radius of Inner Support Ring: 450 mm
- Scintillator thickness : 3 mm

(仅显示 16 边形灵敏区)

2.4 GSHCAL vs. Baseline Design

By using a similar setup with the AHCAL, the GSHCAL can achieve a more compact structure and less readout channels, as well as a comparable PFA performance with the DHCAL

2.5 Different GSHCAL Designs

The GSHCAL2 design is slightly thicker (+30 mm) than the AHCAL, BMR can reach $\sim 3.6\%$ (improved $\sim 5\%$)

The GSHCAL3 is a homogenous design, with which the BMR can reach ~3.4% and show ~10% improvement, but the total volume and readout channel will also increase significantly

Dead area of Barrel HCAL

layer	short length(cm)	cell nunber a	abnormal cell	dead area(cm)	25	106. 9734	24	2	0. 1934	
1	81.00	20	0	0. 403	26	108.0555	23	3	0.2755	
2	82.09	19	1	0. 4851	27	109. 1376	27	0	0.3276	
3	83.17	18	2	0.5672	28	110. 2197	26	1	0.4097	
4	84.25	17	3	0. 6493	29	111. 3018	25	2	0. 4918	
5	85.33	21	0	0.7014	30	112. 3839	24	3	0. 5739	mean length of trapezium:
6	86.41	20	1	0. 7835	31	113. 466	28	0	0.626	25.4328+48*0.54=38.39
7	87.50	19	2	0.8656	32	114. 5481	27	1	0.7081	5108+48*0.54=5134
8	88.58	18	3	0.9477	33	115. 6302	26	2	0.7902	
9	89.66	22	0	0.9998	34	116. 7123	25	3	0.8723	38.39/5134=0.75%
10	90. 74	20	2	0.0819	35	117. 7944	29	0	0.9244	
11	91.82	19	3	0.164	36	118.8765	27	2	0.0065	1174*(4.03^2-4^2)+
12	92.91	23	0	0.2161	37	119. 9586	26	3	0.0886	70*(4.03*5.03-4*5)=302
13	93. 99	22	1	0.2982	38	121.0407	30	0	0.1407	- (,
14	95.07	21	2	0. 3803	39	122. 1228	29	1	0. 2228	302/(5134*4.03)=1.4%
15	96.15	20	3	0.4624	40	123. 2049	28	2	0.3049	
16	97.23	24	0	0. 5145	41	124. 287	27	3	0.387	2 1*2*18/5131-1 5%
17	98.32	23	1	0. 5966	42	125. 3691	31	0	0. 4391	2.4 2 40/3134-4.570
18	99.40	22	2	0. 6787	43	126. 4512	30	1	0. 5212	
19	100. 48	21	3	0.7608	44	127. 5333	29	2	0.6033	
20	101.56	25	0	0.8129	45	128.6154	28	3	0.6854	
21	102.65	24	1	0.895	46	129. 6975	32	0	0.7375	
22	103.73	23	2	0.9771	47	130. 7796	31	1	0.8196	
23	104.81	26	0	0.0292	48	131.8617	30	2	0.9017	
24	105.89	25	1	0.1113	total	<mark>5108. 7528</mark>	<mark>1174</mark>	<mark>70</mark>	<mark>25. 4328</mark>	

Barrel HCAL preliminary cooling design

From Yatian

Static temperature simulation result

