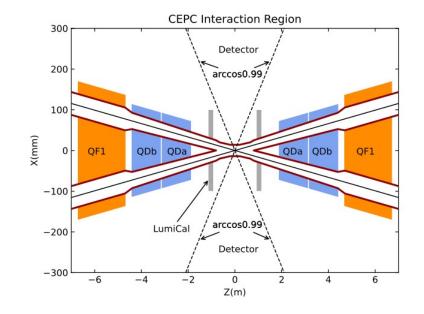


CEPC MDI and Beam Measurement

Haoyu SHI

中國科學院為能物品和完備 Institute of High Energy Physics Chinese Academy of Sciences


Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- Detailed design including electronics, cooling and mechanics
- Beam Induced Background Estimation
- Research team and working plan
- Summary

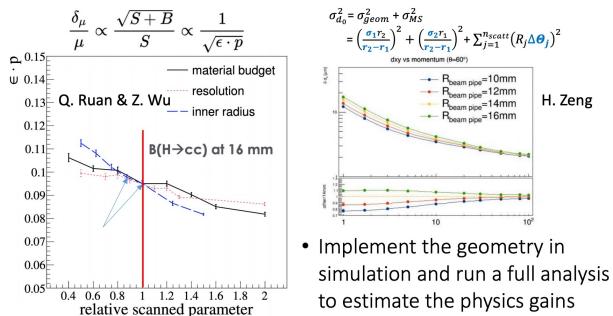
Introduction

- This talk relates to the Ref-TDR Chapter 10: MDI and Beam Measurement.
- There will be several topics in this chapter and talk, mainly including
 - The Layout of the IR Region
 - Key components like central beam pipe
 - Beam induced background estimation
 - LumiCal

Requirement

Low material budget and stable beampipe

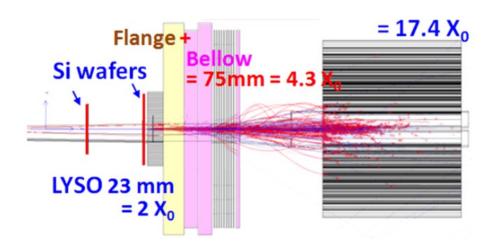
- Low material budget(<0.15%X₀)
- Temperature and stress acceptable
- High precision measurement of the luminosity
- 1e-4 precision @ Z-pole
 Reasonable Estimation of Beam induced background level
 - Understanding of Beam induced Backgrounds
 - Mitigation methods
 - Based on the 50-MW design of CEPC Accelerator

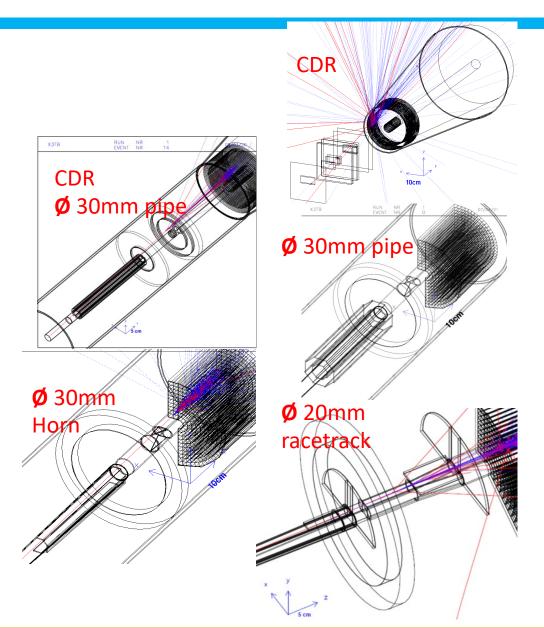

	Higgs	Z	W	tī	
Number of IPs	2				
Circumference (km)	100.0				
SR power per beam (MW)	50				
Half crossing angle at IP (mrad)	16.5				
Bending radius (km)	10.7				
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	29.52	5.98	1.23	
Bunch number	446	13104	2162	58	
Bunch anazing (ng)	355	23	154	2714	
Bunch spacing (ns)	(53% gap)	(10% gap)	134	(53% gap)	
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0	
Beam current (mA)	27.8	1340.9	140.2	5.5	
Phase advance of arc FODO (°)	90	60	60	90	
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71	
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7	
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7	
Betatron tune v_x/v_y	445/445	317/317	317/317	445/445	
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.5	1.05/2.5	2.0/2.6	
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.1	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune v_s	0.049	0.032	0.062	0.078	
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/930	60/195	81/23	
Beam lifetime requirement (min)	20	81	25	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	8.3	192	26.7	0.8	

Technology survey and our choices

Beam pipe

- Be as material
- Inner diameter 20mm, 2layer, ultra-thin design
- Shrinking of the inner diameter to have a better performance of the detectors, ~15% increase comparing to 28mm in CDR


• First estimates made with fast simulation and scaling



Technology survey and our choices

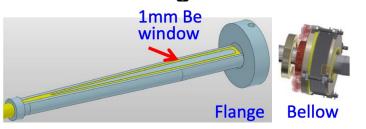
Luminosity Calorimeter

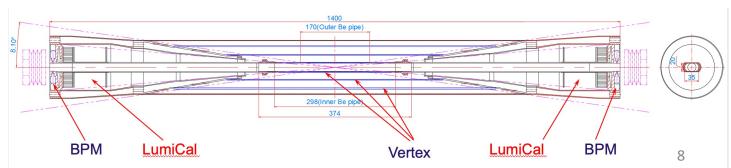
- Updated together with the revolution of beam pipe/MDI
- Si wafer + Crystal
- Be window
- Moon Cake like design

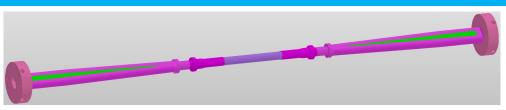
Main Technical Challenges

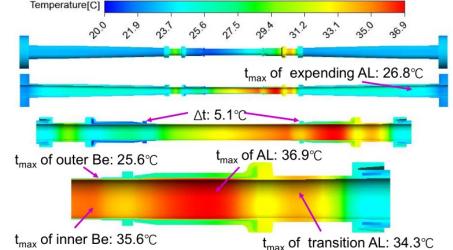
For whole region layout:

– How to get all things work within a very tight space.

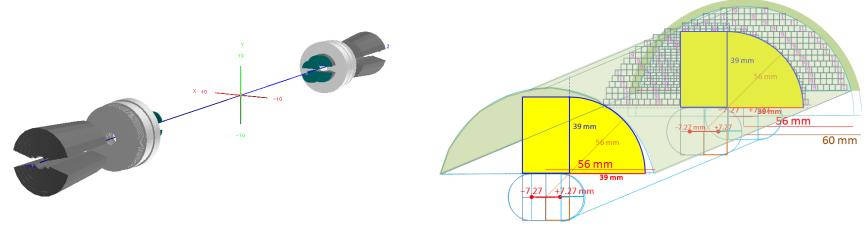

For Key components:

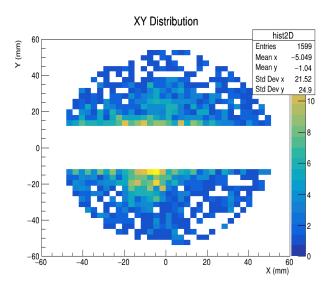

- Beampipe: Material, thickness to meat the requirements
- LumiCal: The measurement of position to meet the requirements
- For Beam Induced Background Estimation:
 - The Tools and Methods to have a reasonable estimation.
 - The Mitigation methods to let the BG level could be acceptable by all subdetectors

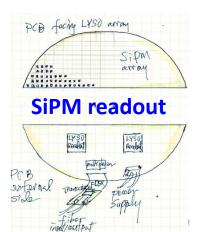

Detailed design including electronics, cooling and mechanics


Beam pipe

- Inner Diameter 20mm
- Inner Layer with thickness of 0.20mm
- Gap for coolant with thickness of 0.35mm
 - Water chosen as coolant instead of paraffin
- Outer Layer with thickness of 0.15mm
- Possible Gold coating with thickness of 10um tmax
- Low material budget window for LumiCal, together with high-Z material for shielding

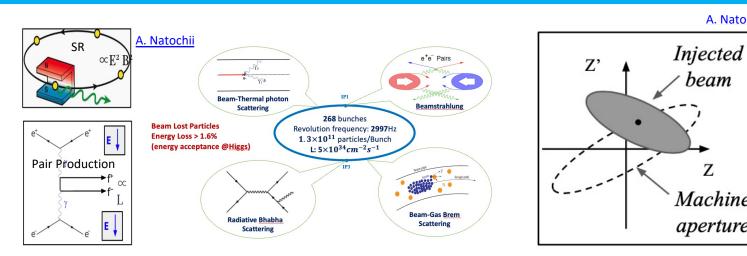





Detailed design including electronics, cooling and mechanics

LumiCal

- 2 parts, first Si wafer + LYSO, second LYSO only
 - First Silicon Wafer locates at 560mm, than 640mm
 - First LYSO has a length of 23mm(starts from 647mm)
 - Second LYSO has a length of 200mm(starts from 900mm)
- Half Moon-cake like design
 - Height ~ 39mm, radius ~ 56 mm



Estimation of Beam Induced Backgrounds

- Single Beam
 - Touschek Scattering •
 - Beam Gas Scattering(Elastic/inelastic) ٠
 - Beam Thermal Photon Scattering ٠
 - Synchrotron Radiation ٠
- Luminosity Related ٠
 - Beamstrahlung
 - Radiative Bhabha Scattering ٠
- Injection

Beam Loss BG

Generation	Tracking	Detector Simu.
BDSim	BDSim/Geant4	
Guinea-Pig++		<u>CEPCSW/FLUKA</u>
PyBTH[Ref]		
PyBGB[Ref]	SAD	
BGC in <u>SAD</u>	<u>SAD</u>	
BBBREM		
TSC in <u>SAD</u>		
	BDSimGuinea-Pig++PyBTH[Ref]PyBGB[Ref]BGC in SADBBBREM	BDSimBDSim/Geant4Guinea-Pig++PyBTH[Ref]PyBGB[Ref]BGC in SADBBBREM

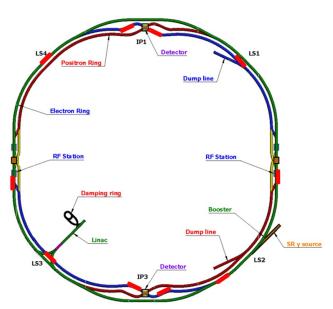
Photon BG

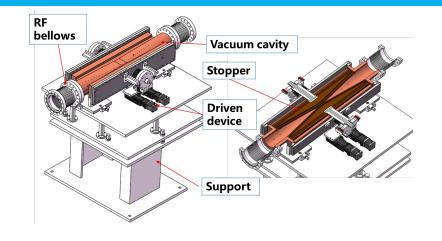
One Beam Simulated

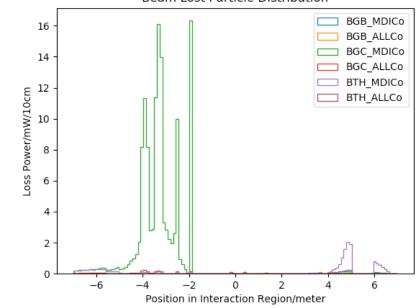
- Simulate each background separately
- Whole-Ring generation for single beam BGs
- Multi-turn tracking(200 turns)
 - Using built-in LOSSMAP
 - SR emitting/RF on
 - Radtaper on
 - No detector solenoid yet

beam

Ζ


Machine


aperture

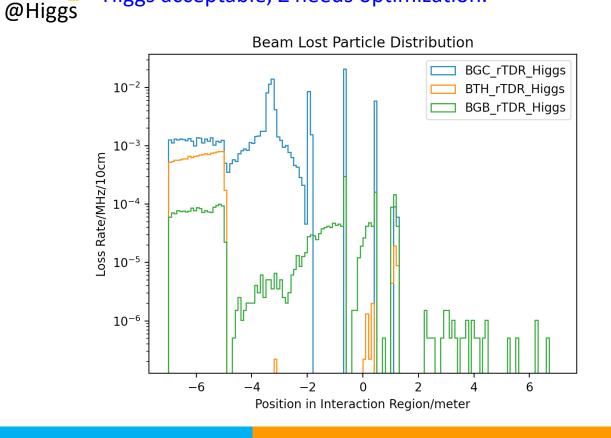

Injection BG

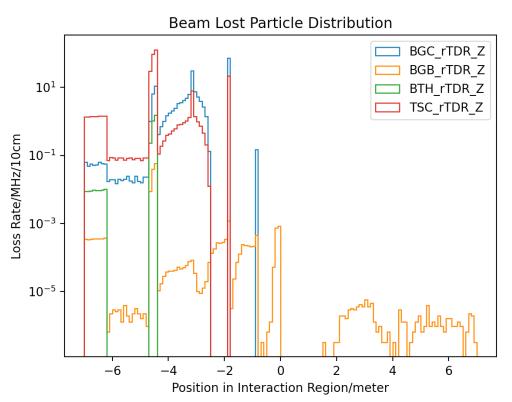
Mitigation Methods for Single Beam

- Requirements:
 - Beam stay clear region: 18 σ_x +3mm, 22 σ_y +3mm
 - Impedance requirement: slope angle of collimator < 0.1
- 4 sets of collimators were implemented per IP per Ring(16 in total)
 - 2 sets are horizontal(4mm radius), 2 sets are vertical(3mm radius).
- One more upstream horizontal collimator were implemented to mitigate the Beam-Gas background
- A preliminary version of Collimator designed for Machine protection is finished. ~40 sets of collimators with 3mm radius are set alongside the ring.

Beam Lost Particle Distribution

Loss Map of Single Beam @ IR


Loss Time


Loss Rate =

- Errors implemented
 - High order error for magnets
 - Beam-beam effect
 - No Detector Solenoid Currently
 - Higgs acceptable, Z needs optimization.

 $\underline{Loss Number} = \underline{Bunch number * Particles per Bunch * (1 - e^{-1})}$

Beam Lifetime

Estimation of Impacts in the MDI

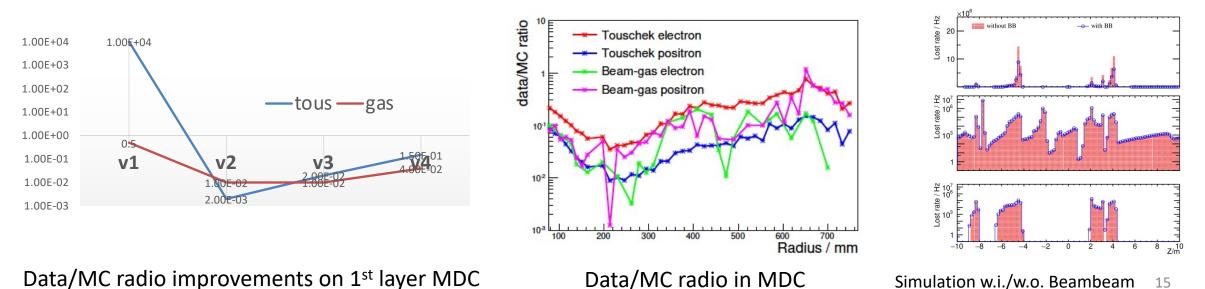

Noise on Detector(Backgrounds)

- Occupancy
- Estimate using the same tool with Physics simulation, Analysis by Detector
- Radiation Environment(Backgrounds + Signal)
 - Radiation Damage of the Material(Detector, Accelerator, Electronics, etc...)
 - Estimate using the same tool with physics simulation including the dose calculation/FLUKA
 - Radiation Harm of the human beings and environment
 - Estimate using the same tool with physics simulation including the dose calculation/FLUKA

Benchmark and Validation

If possible, step by step. If not, using Experimental Data.

 For Pair-Production, we could have some generation level cross check with FCC-ee's simulation Results



 For Single Beam BG, we have the same generation formula with SuperKEKB

Benchmark and Validation - II

BG experiments on BEPCII/BESIII has been done several times.

- We separated the single beam BG sources using SuperKEKB method, the data/MC ratio has been reduced 2 order of magnitude due to update of the IR model.
- Study on beam-beam reduced another ~15% of simulation.

Working plan

	2024.8	2024.12	2025.6	Beyond Ref-TDR
Key Components like Be beam pipe				Study on Au-Coating Study on Al-Be Welding and Anti- corrosion on Be
LumiCal	Fully Integrated with CEPCSW	Design optimization based on Simulation		Beam Test if possible
BG Estimation	Estimation on Higgs/Z, Single Beam and Luminosity Related	Whole Map Estimation on 4 modes, including pre-estimation on injection and Mitigation Methods	Whole Map Estimation and Mitigation on 4 modes	Benchmark experiments on BESIII or SuperKEKB

Contents of the TDR Document

- 10、 Machine Detector Interface and Luminosity Detectors (Haoyu/Suen/Sha)←
 - 1. Introduction & Requirements(Haoyu)←
 - 2. IR Layout(Haoyu/Sha/Quan/Haijing)↩
 - 3. Key design/parameters(beampipe, final focusing, etc..)←
 - i. Central Beampipe(Quan, Haoyu)↔
 - ii. Final Focusing System, Anti-solenoid(Yingshun)↔
 - iii. Cryo-Module(Xiangzhen, Xiaochen)←
 - 4. Detector/IR Backgrounds(Haoyu)↔
 - i. Introduction←
 - ii. Shielding Design/mitigation methods
 - iii. Estimation←
 - iv. Benchmark
 - 5. Luminosity Measurement System(Suen/Lei/Weiming)←
 - 6. Radiation Monitoring System Proposal(Haoyu/Guangyi/Zhongjian)←
 - 7. Summary & Outlook←
 - 8. Ref. List

Research Team

The working group consists of many people from different institutions/universities, including

- IHEP: ~ 20 staff(including colleagues from acc. side), most of them have participated in BEPCII/HEPS/etc, and ~ 7 students
- IPAS: Suen Hou, participated in LEP, Editor of MDI Chap of CDR
- NJU: 1 staff, ~10 students, participated in ATLAS
- JLU: 1 staff, 1 students , participated in BESIII/Belle II
- VINCA: 5 staff, Ivanka Bozovic was the editor of MDI Chap of CDR

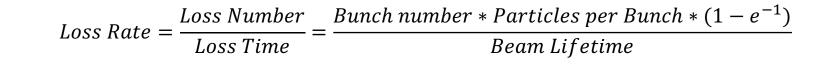
Summary

- The tasks of the MDI and Beam Measurement are very critical and challenge, including:
 - The design of key components like beam pipe, quads, and cryo-module
 - The Luminosity Measurement System
 - The Estimation of Beam-induced backgrounds and mitigation methods.
- For the key components design, the technical design has been finished last year(published Acc. TDR volume), may need more engineering effort on future like manufacture, welding and gold coating for the Be beam pipe.
- For the Luminosity Measurement system, the design has been finished, the simulation and optimization will be finished by the end of this year, there will be no show-stopper.
- For the beam induced background estimation, there will be a whole map this month. Further mitigation could be continued together with accelerator towards the EDR and maybe construction phase.

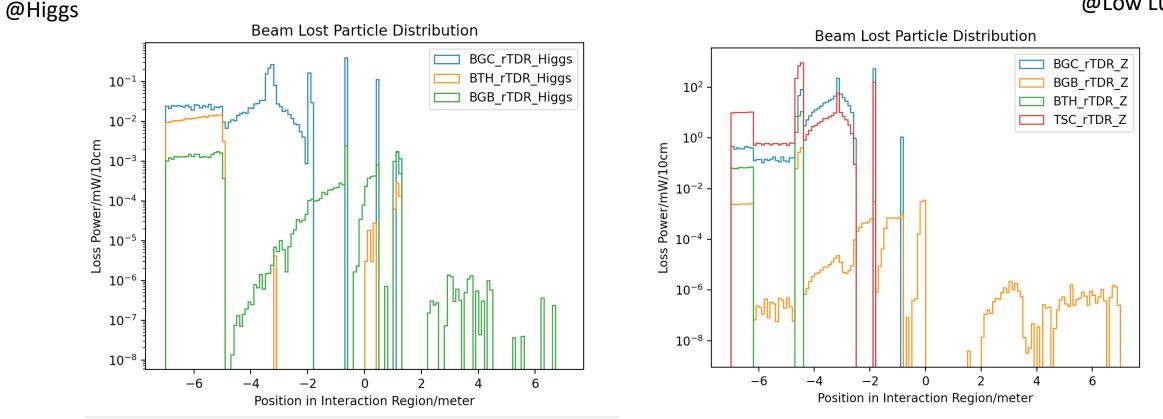
Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

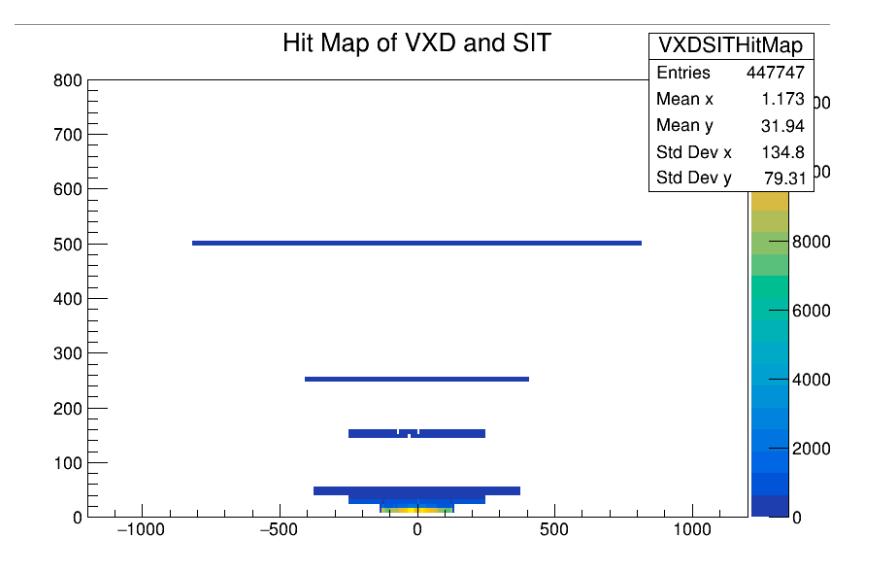
Aug. 7th, 2024, CEPC Detector Ref-TDR Review

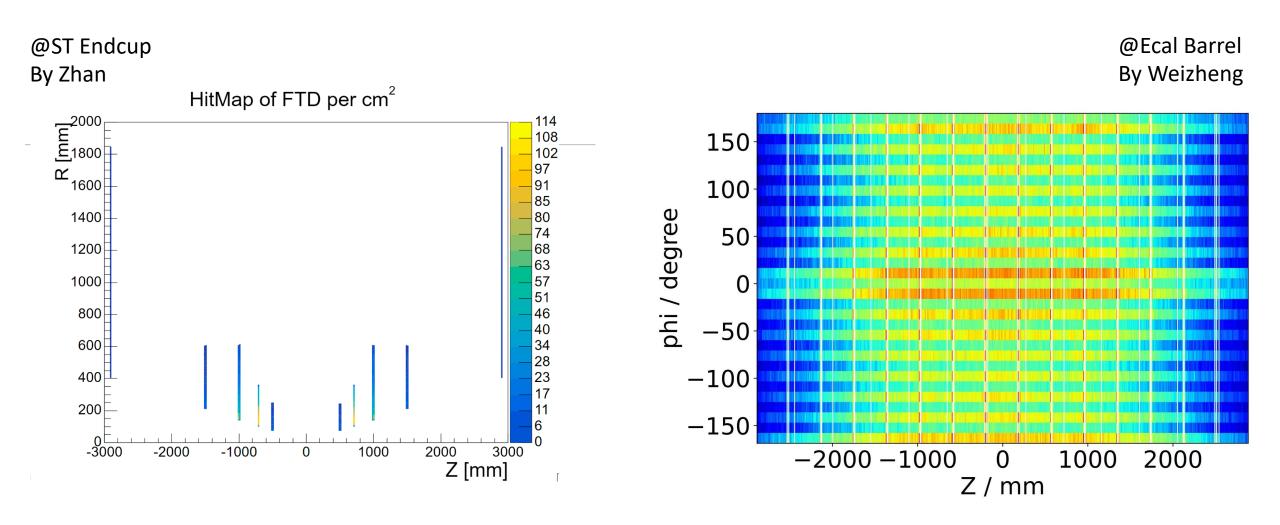

Backup

BG Simulation Status

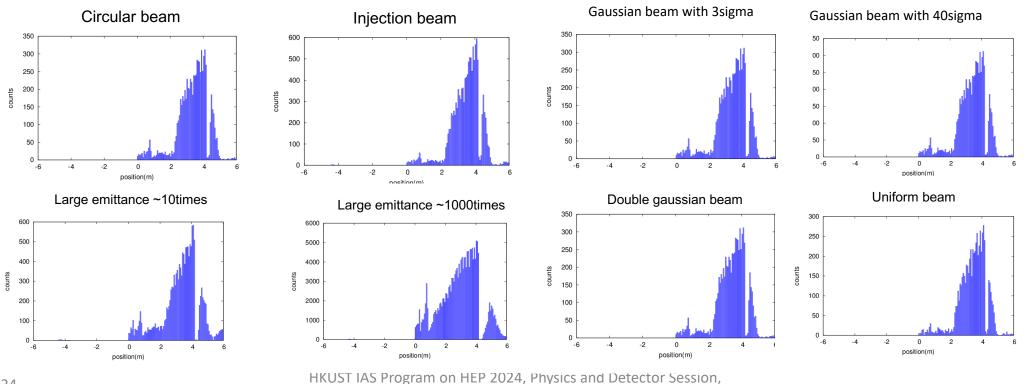

		Higgs	Z	W	ttbar
Vertex	Noise	Simulated	Simulating	Before Dec 2024	Before Dec 2024
	Radiation	Simulating	Simulating	Before Dec 2024	Before Dec 2024
Silicon Tracker	Noise	Simulated	Simulating	Before Dec 2024	Before Dec 2024
	Radiation	Simulating	Simulating	Before Dec 2024	Before Dec 2024
TPC	Noise	Simulated, acceptable	Simulated, acceptable	Before Dec 2024	Before Dec 2024
	Radiation	Simulating	Simulating	Before Dec 2024	Before Dec 2024
EM Cal	Noise	Simulating	To be simulated	Before Dec 2024	Before Dec 2024
	Radiation	Simulating	To be simulated	Before Dec 2024	Before Dec 2024
Hardon Cal	Noise	To be simulated	To be simulated	Before Dec 2024	Before Dec 2024
	Radiation	To be simulated	To be simulated	Before Dec 2024	Before Dec 2024

Loss Rate of Single Beam @ IR


- Errors implemented
 - High order error for magnets
 - Beam-beam effect
- No Solenoid Currently


@Low Lumi Z-pole

Hit Map of Detectors


Hit Map of Detectors

Injection Backgrounds @ Higgs

A preliminary study on the injection backgrounds has been performed:

- RBB is taken into account in all cases
- A simplified model of top-up injection beam
- Tails from imperfectly corrected X-Y coupling after the injection point
- Some tolerances to imperfect beams from the booster (e.g. too large emittances)
- non-Gaussian distributions existing/building up in the booster and being injected into the main

1/24/2024

H.Shi(shihy@ihep.ac.cn)

S. Bai