

# **CEPC TDAQ and Online**

Fei Li, Jingzhou Zhao and Xiaolu Ji On behalf of CEPC TDAQ Group



# Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- Previous experience on large facilities
- R&D efforts and results
- Detailed design
- Research team and working plan
- Summary

## Introduction

- This talk is about the design and development of the TDAQ
- This talk relates to the Ref-TDR Ch 12.
- Questions to physics and simulation
  - What kind of events need to be saved?
  - How to identify these events?
  - What level of background?
- Questions to each detectors and electronics
  - How many raw data need to readout?
  - Whether a hardware trigger is required?
  - If hardware trigger, how fast a latency is acceptable?
  - What trigger primitive information can be provided
  - What level of noise? Signal vs noise occupancy
  - What slow control and monitoring requirements?

## Introduction

- CEPC beam energy, collision period, luminosity:
  - Z(91.2 GeV, 23ns, 115E34), W (160 GeV, 257ns, 16E34) and Higgs (240 GeV, 591ns, 5E34)
- Requirements for rough selection of the relevant objects (jet, e, muon, tau,v, ...) and combinations.





Ref: CEPC Physics at a glance, Lomonosov Conference 2021, by Manqi Ruan

## **TDR Outline**

- Introduction
- Requirements and design considerations
  - Physics requirements for trigger
  - Trigger requirements for sub-detectors
  - Consideration on readout strategy
    - Trigger readout-on-FEE vs. Trigger readout-on-BEE
    - Main constraint on FEE triggerless readout vs. CEPC's data rate
  - Consideration of the readout-interface for electronics
  - Event rate estimation & background rate estimation
- Technology survey and our choices
  - Consideration on Backend Trigger strategy (Hardware Trigger vs. Software Trigger)
  - Consideration on high level trigger algorithm & resources
- Trigger
  - Previous experience on large facilities
  - Previous R&Ds
  - Common Electronics interface
  - Structure of the Trigger for CEPC
  - Common Trigger Board
  - Resource cost estimation

#### DAQ

- Previous experience on large facilities
- Previous R&Ds
- Platform for DAQ and computing
- Algorithm & architecture
- Resource cost estimation

#### Detector Control System

- Requirements on sub-detectors
- On-detector monitoring consideration
- On-detector slow control consideration
- Electronics monitoring and control consideration

#### Experiment Control System

- Requirements
- Network
- Counting room

#### Summary

- Summary on data volume
- Summary on cost

# Requirement

- 7 Sub detectors
- Raw data rate before trigger
  - 4.42Tbps, 553GB/s
    - @ low Lumi Z
  - 22.1Tbps, 2.76TB/s
    - @ high Lumi Z
    - 5 times increase
  - Key issue: FEE readout bandwidth per chip
- Trigger and Online processing
  - Good event rate
    - <300kHz@Z
  - Hardware & software
    - Event filter
    - Data compression
  - Trigger efficiency
  - Event purity

|                                | Vertex                                                | Pix<br>(ITKB)                               | Strip (ITKE)                                | TOF (OTK)                                                     | TPC                                   | ECAL                                                          | HCAL                                                        |
|--------------------------------|-------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|
| Channels<br>per chip           | 512*1024<br>Pixelized                                 | 512*128<br>(2cm*2cm@3<br>4um*150um)         | 512                                         | 128                                                           | 128                                   | 8~16                                                          | 8~16                                                        |
| Ref. Signal processing         | XY addr + BX<br>ID                                    | XY addr + timing                            | Hit + TOT +<br>timing                       | ADC+TDC/TOT+TO<br>A                                           | ADC + BX<br>ID                        | TOT + TOA/<br>ADC + TDC                                       | TOT + TOA/<br>ADC + TDC                                     |
| Data<br>Width<br>/hit          | 32bit                                                 | 48bit                                       | 32bit                                       | 40~48bit                                                      | 48bit                                 | 48bit                                                         | 48bit                                                       |
| Data rate<br>/ chip            | 1Gbps/chip<br>@Triggerless<br>@Low LumiZ<br>Innermost | 640Mbps/chip<br>Innermost                   | Avg.<br>1.01MHz/chip<br>Max.<br>100MHz/chip | Avg:<br>26kHz/chip @ z<br>pole<br>Max: 210kHz/chip<br>@z pole | ~70Mbps/<br>modu<br>Inmost            | <4.8Gbps/modul<br>e                                           | <4.8Gbps/modu<br>le                                         |
| Data<br>aggregatio<br>n        | 10~20:1,<br>@1Gbps                                    | 1. 1-2:1<br>@Gbps; 2.<br>10:1@O(10Gb<br>ps) | 1. 10:1<br>@Gbps<br>2. 10:1<br>@O(10Gbps)   | 1. 10:1<br>@1Mbps<br>2. 10:1<br>@O(10Mbps)                    | 1. 279:1<br>FEE-0<br>2. 4:1<br>Module | 1. 4~5:1 side brd<br>2. 7*4 / 14*4<br>back brd @<br>O(10Mbps) | < 10:1<br>(40cm*40cm<br>PCB – 4cm*4cm<br>tile – 16chn ASIC) |
| Detector<br>Channel/<br>module | 2218 chips<br>@long barrel                            | 30,856 chips<br>2204 modules                | 22720 chips<br>1696<br>modules              | 41580 chips<br>1890 modules                                   | 258<br>Module                         | 1.1M chn                                                      | 6.7M chn                                                    |
| Data<br>Volume<br>before Trg   | 2.2Tbps                                               | 2<br>Tbps                                   | 22.4<br>Gbps                                | 1<br>Gbps                                                     | 18Gbps                                | 164.8Gbps                                                     | 14.4Gbps                                                    |

## Belle II TDAQ

- 30 kHz level 1 trigger
- 4.5us L1 latency
- PCIe card readout (except for PXD)
- Buffer PXD data at ONSEN
  - Read out by HLT Rol
  - Gen. Rol by SVD track





Ref: Belle II DAQ system talk by Qidong Zhou

## Atlas TDAQ(Phase II)

- Data rate 4.6 TB/s
- Collect trigger primitive from BEE (Back-End Electronics)
- Fast L0(3us) + L1(10us) + HLT
- HW trigger sent to FEE (Front-End Electronics)
- Common PCI card BEE
- Global HTT(Hardware Track Trigger)
  - FPGA based





Baseline



FELIX-155, PCIe gen5x16 482Gb/s, 48 fiber link

Ref: ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC, LeptonPhoton2019

## CMS TDAQ(Phase II)

- Data rate 5.5TB/s
- L1(12.5us) + HLT
- Part FEE trigger less readout
- Common ATCA BEE
  - Serenity
- ATCA readout board with Ethernet
  - DTH-400Gb/s
  - DAQ-800Gb/s



Ref: The Phase-2 Upgrade of the CMS DAQ Interim Technical Design Report

#### LHCb run3

- Run 1–2 trigger: hardware L0 (40→1 MHz)
- Read full event at bunch-crossing rate(4TB/s)
  - Cope with higher occupancy.
  - Faster/higher precision tracking
- Design characteristic:
  - Use disk as a buffer between HLT1 and HLT2.
  - Compute at HLT1 level using GPUs.
  - Event Building using Smart NICs.







Ref: <u>GPU-based software trigger for LHCb experiment</u> talk by <u>Anton Poluektov.</u>

- 800Gbps network is commercially available
- Huang's law: computational power of GPU increase 1000 times in past 10 years
- NVIDIA GH200 server: Arm CPU + GPU, IO > 500GByte/s





Ref: https://www.hangyan.co/charts/3351671202081932642

Ref:DUNE Cold Electronics R&D at ICEBERG, ICHEP-2024, Prague

## **Our choices**

## Trigger solutions

- 1.Full FEE trigger less readout + L1 + HLT
  - Baseline option
  - Simplified FEE design, extract trigger primitive from BEE
  - No high demand for low L1 latency
- 2.Full software trigger
  - Preferred option
  - Simplified BEE and trigger design
  - When L1 compression ratio is low
- 3.Fast L0 + L1 + HLT
  - Backup option
  - When not enough readout bandwidth for part FEE
  - Fast L0 means low trigger latency requirement for part FEE
  - Extract L0 trigger primitive from part FEE

# **Main Technical Challenges**

- 1. Full FEE trigger less readout + L1 + HLT
  - FPGA algorithm: high data compression ratio
- 2. Full software trigger
  - Resource requirement
  - High data throughput and online processing efficiency
- 3. Fast L0 + L1 + HLT
  - Low L0 latency
  - Trigger efficiency
  - Synchronize control
  - Compression ratio

## **Previous experience of TDAQ Hardware**

- Designed BESIII trigger system
  - Trigger simulation/hardware design/core trigger firmware development
  - Common trigger board design for upgrade
  - Share link for data readout, data, fast/slow control and clock transmission
- GSI PANDA TDAQ R&D
  - Proposed concept of triggerless readout in TDAQ
  - Designed HPCN board for TDAQ/EMC trigger algorithm development
- Designed Belle2Link and HPCN V3 as ONSEN for Belle II
- Designed CPPF system for CMS Phase-I
  - Design MTCA board, Cluster finding and fanout to EMTF/OMTF
- Designing iRPC/RPC Backend/Trigger for CMS Phase-II
  - Proposed iRPC Backend system scheme, cluster finding firmware
  - ATCA common Backend and trigger board







# Previous experience of DAQ&DCS

- BESIII DAQ & DCS
  - Running since 2008
- Dayabay experiment DAQ&DCS
  - Running from 2011 to 2020
- LHAASO DAQ
  - Running since 2019,
  - 7k channels, TCP readout
  - Full software trigger
- JUNO DAQ&DCS under developing
  - 40GB/s, 45k channels, TCP
  - Two type data stream
    - HW trigger for waveform
    - Software trigger for TQ hits
  - Online event classification
    - Integrated offline algorithms, compress waveform data to 60MB/s.



Extensive experience in DAQ&DCS development and operation, some in software trigger

# Previous experience of Advance algorithm

#### Neural network at ATLAS global trigger (Boping Chen)

- Example: tau reconstruction at the hardware trigger level
  - Seed with local maximum algorithm
  - Cluster around the seed to build region of interest (ROI)
- Train the neural network (NN) with ROI
  - To distinguish tau from jet
  - Same as image identification: CNN/DNN...
- Use hls4ml to convert NN model to hls project



VCK190 test bench



### HLT Acceleration on FPGA platform (Qidong Zhou, SDU)



## **R&D** efforts and results

- Start to design ATCA TDAQ board for CEPC
  - Based on ATCA standard, designed series of ATCA boards
  - Already used in PANDA, Belle II and CMS experiment



## Streaming Readout Framework - RADAR

heteRogeneous Architecture of Data Acquisition and pRocessing

- **V1:** deployed in LHAASO (3.5 GB/s data rate), software trigger mode
- V2: upgraded for JUNO (40 GB/s data rate), mix trigger mode
  - Containerized running
  - High availability support
- V3: CEPC-oriented (~ TB/s data rate), under development



- Motivation:
  - High-throughput data acquisition and processing
- Current Status:
  - Over a decade of work led to significant progress, tested through experiments
- Recent Focus:
  - Heterogeneous online processing platforms with GPU
  - Real-time data processing acceleration solutions
- Expansion:
  - Application across various domains (DAQ, triggering, control, etc.)
  - Integration of Al technologies (ML, NLP, expert systems, etc.)



- General-purpose distributed framework
- Lightweight structure
- Plug-in modules design
- Microservices architecture



## **R&D** efforts and results









# Preliminary design of hardware trigger

### HW Trigger structure

- Baseline option
  - HW trigger sent to BEE
  - L1 at back-end
- Backend of each detector generate Trigger
  Primitive(TP)
- Sub trigger of generate local detector trigger information(energy, track...)
- Global trigger generate L1A according to physical requirement.
- TCDS distribute clock and fast control signals to BEE.



# Preliminary design of hardware trigger

## Trigger structure

- Backup option
  - HW trigger sent to FEE
  - Fast L0 + L1
- Backend of each detector generate Trigger Primitive(TP)
- Sub trigger of generate local detector trigger information(energy, track...)
- Fast trigger generate local low latency LOA for Vertex to reduce data. Which detectors join this trigger need to be discussed.
- Global trigger generate L1A according to physical requirement.
- TCDS distribute clock and fast control signals to BEE.



# Preliminary design of TCDS/TTC and readout

## TCDS/TTC

- Clock, BC0, Trigger, orbit start signal distribution
- Full, ERR signal feed back to TCDS/TTC and mask or stop L1A

### DAQ readout

- Option1: BEE Data collected and packaged by DCTD board, and sent to Online via network switch.
- Option2: BEE Data sent to Online via network switch.
- TCDS-Tigger Clock Distribution System
- TTC- Trigger, Timing and Control
- DCTD-Data Concentrator and Timing Distribution
- BEE-Backend board Electronic



## Preliminary design of the common Trigger Board

## Common Trigger board function list

- ATCA standard
- Virtex-7 FPGA
- Optical channel: 10-25 Gbps/ch
- Channel number:36-80 channels
- Optical Ethernet port: 40-100GbE
- DDR4 for mass data buffering
- SoC module for board management
- IPMC module for Power management



# Preliminary design of DAQ

- Same with or without hardware trigger
- Readout interface and protocol
  - Ethernet X\*100Gbps/ TCP or RDMA
  - PCIe optional
- GPU acceleration at HLT1 & HLT2
  - FPGA optional
- Memory vs disk buffer for HLT2
  - Better IO performance but smaller volume size
- RADAR software framework
  - Heterogeneous computing cluster



# **Preliminary design of DCS**







# **Preliminary design of ECS**

## Main components of the ECS





- Existed Solutions:
  - 3D Visualization Monitoring
  - Al shift assistant research based on LLM+RAG (TAOChat)
  - Fault root analysis method based on directed acyclic graph
  - A ROOT-based Online Data Visualization System (ROBOT)
- Unified control and monitoring for TDAQ, DCS and others
- Al operation and maintenance



## **Research Team**

- 15 staff of IHEP TDAQ group
  - Kejun Zhu (team director)
- DAQ (4 of 6)
  - Hongyu Zhang (readout)
  - Fei Li (DAQ, team manager)
  - Xiaolu Ji (online processing)
  - Minhao Gu (software architecture)
- Trigger (4 of 5)
  - Zhenan Liu (trigger director)
  - Jingzhou Zhao (hardware trigger)
  - Boping Chen (simulation/algorithm)
  - Sheng Dong (firmware/DCS)
- DCS/ECS (1 of 4)
  - Si Ma

| Born in | number |
|---------|--------|
| 1960s   | 3      |
| 1970s   | 4      |
| 1980s   | 4      |
| 1990s   | 4      |
|         |        |

#### Collaborators

Qidong Zhou (HLT, SDU)



| Born in | number |
|---------|--------|
| 1980s   | 2      |
| 1990s   | 1      |

- Yi Liu (HLT, ZZU)
- Junhao Yin(HLT, NKU)
- IHEP Students(20 totally)
  - 2 Phd and 4 master
- New member need
  - 2 staff next year
  - 2 postdoc
- Looking for more collaborators

# **Working plan**

#### TDR related

- Basic Trigger simulation and algorithm study
  - Event rate and basic algorithm scheme for each detector
- Hardware trigger and interface design
- Finalize TDAQ design scheme

#### R&D

- Trigger simulation and algorithm
- Hardware trigger, fast control and clock distribution
- ROCE/RDMA readout protocol and smart NIC
- TB/s high throughput software framework(RADAR)
  - FPGA/GPU acceleration and heterogeneous computing
  - Memory based distributed buffer
- ML/Al algorithm application
  - Trigger/data compression/ AI operation and maintenance

# Summary

- Completed preliminary design of TDAQ and online
  - Mix hardware and software trigger could be adapted solution currently
  - Full software trigger will be best one if no IO and computational power constraints
- No show-stopper found for hardware and software trigger scheme
  - But fast L0 trigger algorithm and handling TB/s data at manageable hardware scale remain challenges.
- Much R&D effort still needed from design to implementation



# Thank you for your attention!

