

CEPC Software and Computing

Weidong Li (IHEP)

representing CEPC software and computing teams

Content

- Introduction
- Requirements
- Technical options
 - > Technical challenges
 - > Technology survey and our choices
- Software
- Computing
- Research team and working plan
- International collaboration
- Summary

Introduction

- The development of CEPC software started with the iLCSoft
 - Developed CEPC components for simulation and reconstruction
 - Generated M.C. data for detector design and physics potential studies
 - Particularly, CEPC CDR studies done with the iLCSoft

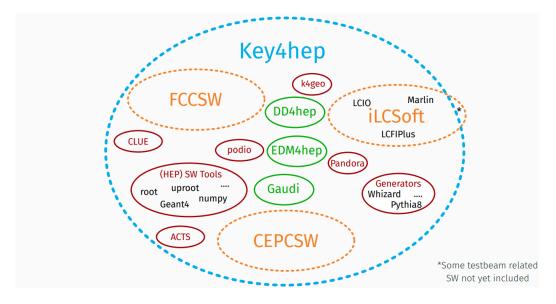


Figure from F. Gaede

- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in 2019
 - Develop a Common Turnkey Software Stack, Key4hep, for future collider experiments
 - Maximize the sharing of software components among different experiment

Requirements

Physics requirements

– High tracking efficiency (~100%), momentum resolution (<0.1%), PID (2 σ p/K separation at P < ~ 20 GeV/c), BMR better than 4% etc.

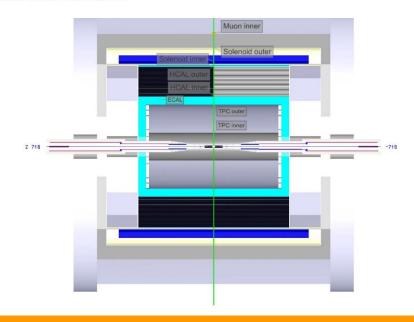
CEPC Reference Detector

VTX: Vertex Detector

ITK/OTK: Inner Silicon Tracker/Outer Silicon Tracker

TPC: Time Projection Chamber

ECAL: Crystal-bar ECAL


HCAL: Glass Scintillator HCAL

Muon: Muon Detector

Both detector design and physics potential studies need software

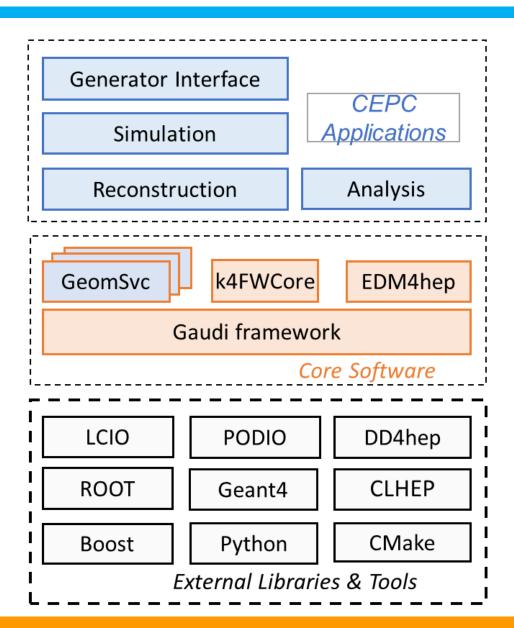
Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} 6}$
$H o bar{b}/car{c}/gg$	${\rm BR}(H\to b\bar b/c\bar c/gg)$	Vertex	$\begin{split} \sigma_{r\phi} = \\ 5 \oplus \frac{_{10}}{_{p(\text{GeV}) \times \sin^{3/2}\theta}} (\mu\text{m}) \end{split}$
$H \to q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar q,WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} = 0.01$

Table 3.3: Physics processes and key observables used as benchmarks for setting the requirements and the optimization of the CEPC detector.

CEPC CDR

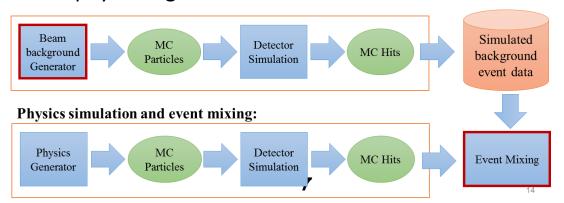
Technical Options

Main technical challenges

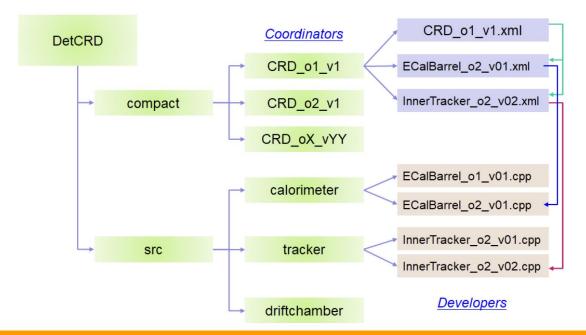

- How to develop large scale software which can be run on diverse hardware CPU/GPU/FPGA/other accelerators
- How to take advantage of novel technologies such as AI and Quantum Computing technologies to cope with the tasks that involve complicated data processing

Technology survey and our choices

- Some important HEP software packages are chosen as the cornerstone of CEPCSW
 - Software framework: GAUDI
 - Simulation: GEANT4
 - Analysis: ROOT
 - Detector Description: DD4hep
 - Event Data Model: EDM4hep
- Join the efforts to resolve the common challenges confronted by future HEP experiments
- At the same time, develop CEPC specific software to meet the experiment's needs

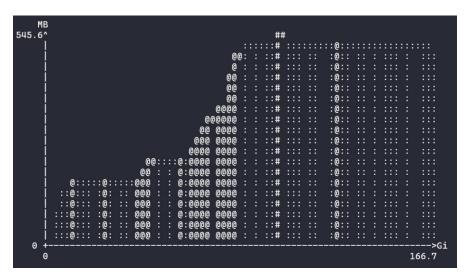

Software: Architecture of CEPCSW

- CEPCSW is organized as a multi-layer structure
 - Applications
 - simulation, reconstruction and analysis
 - Core software
 - External libraries
- The key components of core software include:
 - Gaudi: defines interfaces to all software components
 - k4FWCore: management of event data objects
 - EDM4hep: generic event data model
 - DD4hep: detector geometry description
 - CEPC-specific components: GeomSvc, simulation framework, analysis framework, beam background mixing, fast simulation, machine learning interface, etc.



Software: Simulation Framework

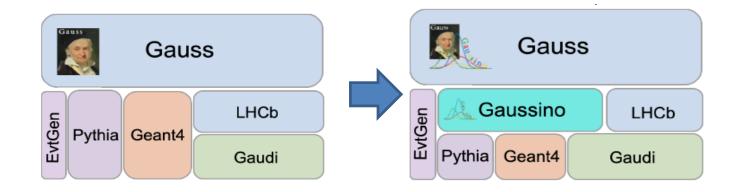
- The simulation framework was developed
 - based on which the simulation chain for subdetectors was built
- The region-based fast simulation interface is available
 - to integrate different fast simulation modules into the simulation chain
- An event mixing tool was provided
 - to mix different types of background events with physics signals at hit level



- DD4hep was adopted to provide a full detector description
 - Geometry generated from a single source
- Different detector design options are managed in the Git repository
 - Simulation jobs can be easily configured in runtime

Software: Simulation R&D

- Multi-threading mandatory
 - Reduce memory footprint


Heap memory usage (serial simulation)

Simulation setup:

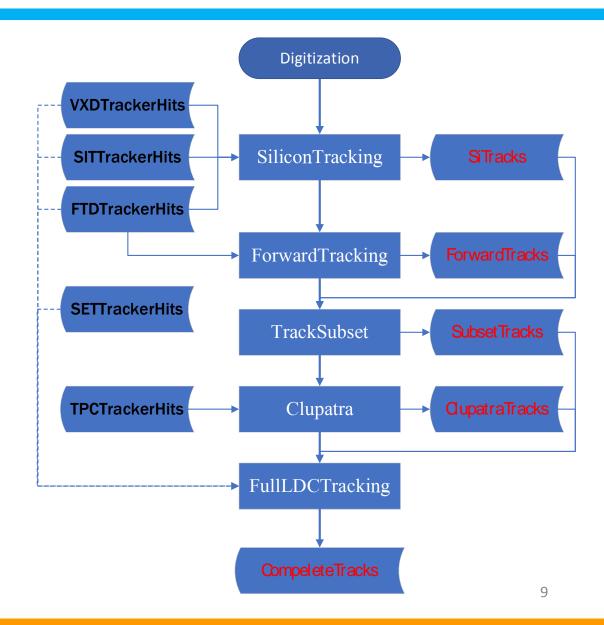
- Detector: TDR_o1_v01
- Physics list: QGSP_BERT
- Generation: single muons
- N events: 100

About 1GB memory needed for reading detector geometry at the initialization stage.

- Use LHCb's Gaussino as a common framework
 - Planned by Key4hep. [arXiv: 2312.08152]

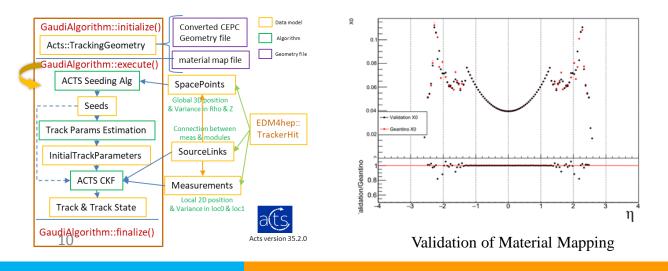
- Implementation of CEPC-on-Gaussino prototype
 - Cooperated with the software experts from CERN
 - Removed dependencies on the LHCb software stack
 - As a demo, VXD simulation was implemented

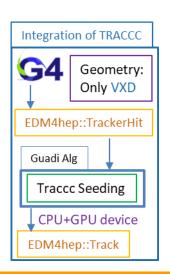
ICHEP 2024 Parallel Talk by Tao Lin

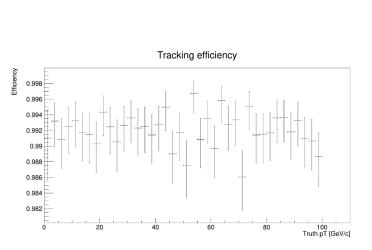

Software: Tracking

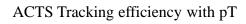
Track reconstruction in VTX, ITK, TPC, and OTK

- Track finding starts from the outmost layer in the ITK and then moves from outside to inside
- For a found track candidate in ITK and VTX, the OTK hits will be selected and added to it
- The search for tracks in TPC is independent from track finding in silicon trackers
- A combined fit is applied to all the track hits in silicon trackers and TPC

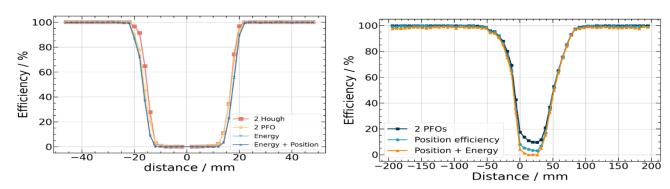

Algorithms and tools originally from ILD

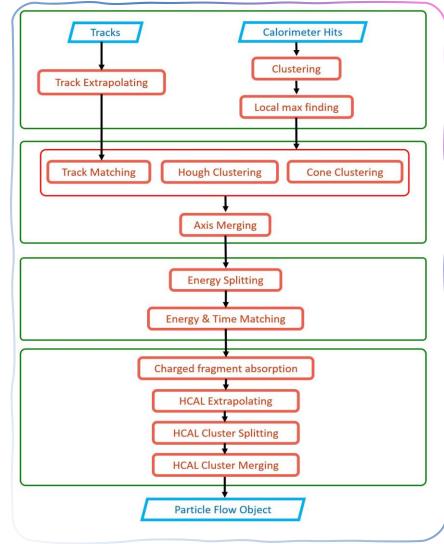

- SiliconTracking: VTX and ITK
- ForwardTracking: ITK
- TrackSubset: removing duplicated tracks
- Clupatra: TPC
- FullILDTracking: combined fit




Software: Tracking R&D

- ACTS is an experiment-independent toolkit for track reconstruction
 - High-performance parallel software for complex hardware (CPU/GPU/...)
- Applying ACTS to track reconstruction in CEPC silicon trackers
 - Convert the CEPCSW's geometry to the ACTS's format
 - Map Geant4 material to the ACTS's material
- Developing CEPC seeding algorithm based on TRACCC
 - Integration of TRACCC with the CEPCSW
 - Seeding algorithm of VXT was implemented and can be on both CPU and GPU





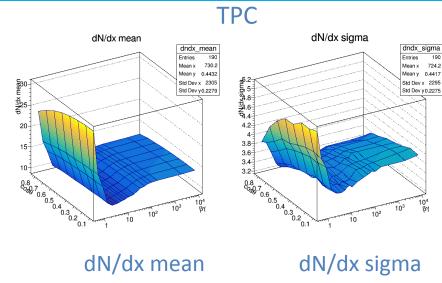
Software: Crystal-bar ECAL

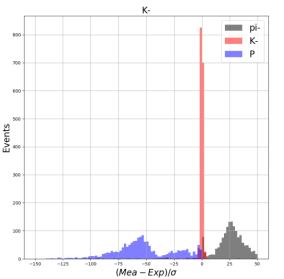
- Development of a new particle flow algorithm for crystalbar ECAL
 - Clustering
 - Shower recognition
 - Energy splitting and ambiguity removal
 - Re-clustering
- Reconstruction performance
 - Separation capability of two particles
 - $\gamma \gamma$ separation: 2.2 cm @ 100% efficiency
 - $\gamma \pi$ separation: 10 cm @ 100% efficiency

 $\gamma - \gamma$ separation for 5 GeV photons

 $\gamma-\pi$ separation for 5 GeV γ and π^-

Software: Particle Identification

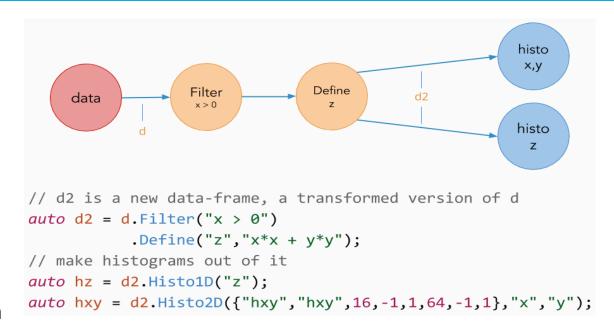

Simulation of track-level dN/dx in TPC

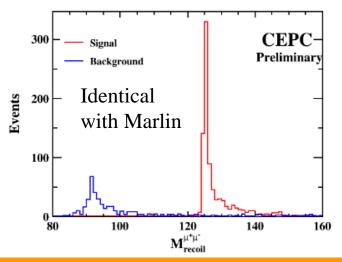

- A parameterized model was established based on results from Garfield++ simulation including gas ionization, drift and diffusion of electrons in the gas
- A Gaudi algorithm is used to generate the track's dN/dx information according to the parameters of an input track

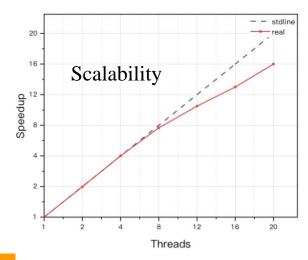
Simulation of Time-of-Flight in OTK

A Gaudi Algorithm is used to calculate TOF of a track
 Geometry: R=1850mm, L/2=2350mm (will be updated based on newest geometry)

TOF model:
$$t_{mea} = tof_{truth} + Gaussian(0, t_{bunch} = 20ps) + Gaussian(0, \sigma = 50ps)$$



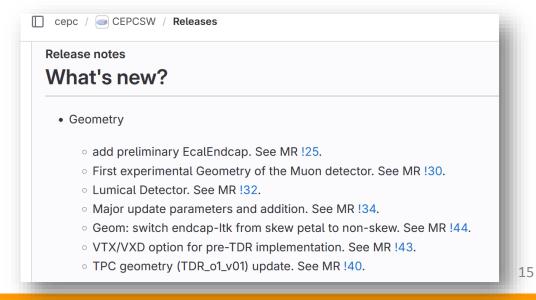

Software: Detector Software Summary


Sub Detector	Options	Detector description/Simulation	Digitization	Reconstruction	
MDI+LumiCal		Implemented	None	None	
VTX	Baseline	None			
VTX	Backup	Cooling, electronics, and part of support structure	Smearing	Clusters are formed and then converted into space points. Track finding starts from the most outer layers in the ITK and searches for space points of a track from outside to inside.	
ITK				track from outside to inside.	
FTK		Equivalent material for sensitive			
OTK		detector and support structure		After adding the OTK hits, track fitting will be executed to produce track parameters.	
OTK_PID		Generation of TOF through a parametric model		None	
TPC	Baseline	Implemented	Model based Garfield simulation	Searching for tracks in TPC first and then performing a combined fit to all the hits from both TPC and silicon trackers	
TPC_PID		Generation of dEdx (or dN/dx) through a parametric model		None	
ECAL-Barrel	Materials and geometry from the preliminary design		Model based on testbeam data	New PFA algorithm	
ECAL-Endcap			None	Being validated with MC data	
HCAL-Barrel		Model based on testbeam data	Being developed		
HCAL-Endcap			None		
MUON-Barrel		Added materials and goometry	None	The reconstructed tracks are extrapolated to the Muon Detector and matched with the muon	
MUON-Endcap		Added materials and geometry	None	track according to the truth information.	

Software: Analysis Framework

- RDataFrame is a powerful tool for parallel data analysis
 - Program language: Python and C++
 - Declarative programming and parallel processing
 - Used by many experiments such as FCC-ee
- Recent developments
 - Developed common data input interfaces to support both LCIO data and EDM4hep data
 - Several algorithms were ported from Marlin
 - JetClustering , KinematicFit
 - More are being implemented
 - VertexFit, JetTagging, PID etc.
 - Performance test with two physics channels
 - e+e- -> Z(mumu)H
 - e+e- ->H(2jet) mumu





Software: Development Environment

- "Fork Merge Request" workflow
 - IHEP GitLab: https://code.ihep.ac.cn/cepc/CEPCSW
 - Unit test with "ctest" in CI/CD.

- "Release early, release often"
 - To support fast iteration of detector design
- New "time-based" version numbering scheme for TDR: tdrYY.MM.NN
 - E.g., tdr24.5.0: the first release in May 2024.
 - Release notes:https://code.ihep.ac.cn/cepc/CEPCSW/-/releases

CEPC Computing (1)

Technical challenges

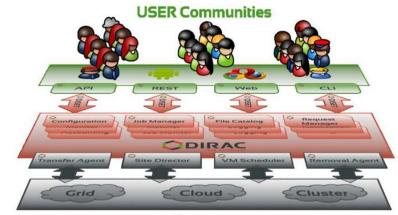
- Management of diverse hardware needed by new HEP applications
- Increasing complexity in data management caused by large data volume
- More complicated workflow for data transfer and job scheduling
- Growing complications in using opportunistic resources efficiently

Technology survey and our choices

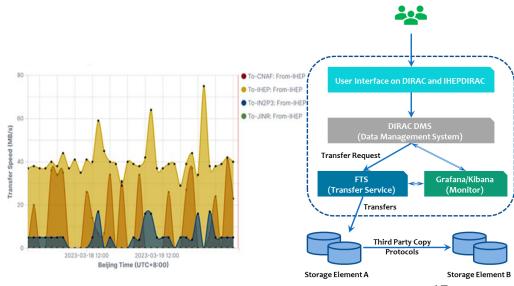
- DIRAC chosen as the distributed computing middleware
 - Having strong capabilities proven by other HEP experiments including LHCb and Belle II
 - Being able to integrate heterogeneous computing resource, e.g. Grid, HTC Cloud and supercomputer
 - DIRAC consortium provides a platform to share experiences with other experiments
- Rucio chosen as the data management system
 - Providing services and associated libraries for managing large volumes of data
 - Used by many experiments and allows adding experiment-specific customisations
 - Playing an important role in the Data Lake prototype being developed for HL-LHC

CEPC Computing (2)

Requirements


 Data volume and computing resources will be estimated with full detector simulation

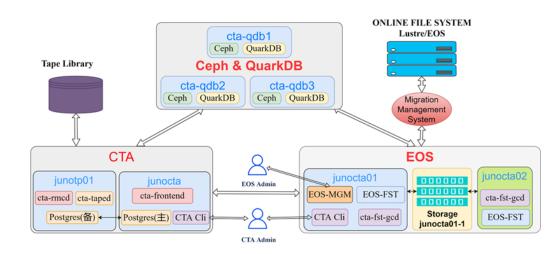
Computing Model

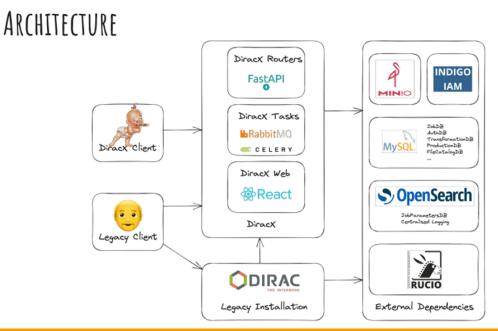

- Tier 0: IHEP serves as the primary hub for computing and data processing
- Tier 1: Large sites act as major support centers with strong capabilities of computing and storage system
- Tier 2: Smaller sites provide supplementary computing power and storage capabilities

A DIRAC-based platform established

- IHEP holds 2,000 dedicated cores including 640 cores shared with ILC and other sites contribute the rest 2600 cores
- The prototype for workload and data management was developed
- Regular TPC test system was established and monitoring was implemented with ElasticResearch+Kibana/Grafana

Resources


CEPC Computing (3)


Four data storage systems were deployed at IHEP

- Lustre: an open source parallel file system for industry
 - Adopted by more than 70% of the world's supercomputing centers
 - IHEP and GSI are the largest units deploying LUSTRE in the field of high energy physics
- EOS: open source storage system
 - Based on XRootD protocol, with good scalability and performance
 - IHEP is one of the largest EOS deployment site, approaching 100PB
- CTA: An open source tape library storage system
 - Based on the previous generation system CASTOR
 - It supports EOS/ dCache disk storage system
- CVMFS: software storage system
 - 6 warehouses, 14 terabytes
 - Deploy software repositories for high energy physics experiments

Work in progress

- Evaluating "Data Lake" model with Rucio and XCache
- Optimizing the performance of data access

Research team and working plan

Software

- Institutes: IHEP, SDU, USTC, SYSU, FDU, SCNU, ZZU
- Manpower: 15 faculties, 2 Postdocs, 4 PhD students, 3 MSc students
- Work plan
 - Application of multithreading with Gaudi and adding the support of data-parallel computing
 - Re-implementing the simulation chain with Gaussino in collaboration with the Key4hep team
 - Application of ACTS to silicon trackers and investigating its possible extension to gaseous detectors
 - Further development of calorimeter and PID software to validate the performance of the reference detector
 - Implementation of detector visualization and event display tool with Phoenix

Computing

- Institutes: IHEP
- Manpower: 8 faculties
- Work plan
 - Moving towards a token-based authorization and authentication infrastructure (AAI)
 - Migration to DiracX to enhance system performance
 - Providing support for Machine Learning and complex workflows

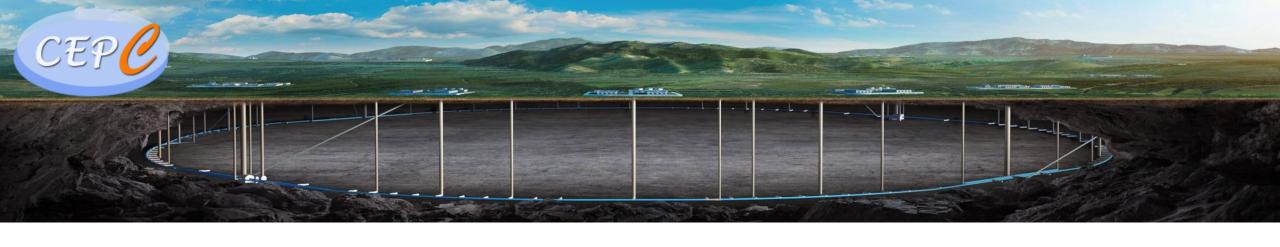
International Collaboration

- IHEP and SDU are non-EU members of Key4hep project (AIDAinnova WP12)
 - One of earliest users of Key4hep
 - Extension of Edm4hep, Application of Gaussino Framework, Integration of Pandora with Key4hep,
 Automated performance validation, etc.
- Collaboration with IDEA detector group in R&D of drift chamber
 - Implementation of waveform reconstruction with machine learning method
- Collaboration with the ACTS group
 - Adding precise simulation of drift chamber into the Open Data Detector
 - Implementation of track reconstruction in silicon trackers with ACTS/TRACCC
- IHEP is an official member of the DIRAC consortium
 - Integration of cloud resources, support of multi-core jobs, etc.
 - Evaluation of DiracX

RefDet TDR: Software Chapter

- Introduction
- Core software
 - Software Architecture
 - Integration with Key4hep
 - Data management
 - Control flow
- Simulation
 - Generator
 - Simulation framework
 - Fast simulation
- Reconstruction algorithms
 - Tracking algorithms
 - PID Algorithms

- Particle Flow Algorithms
- Analysis software
 - RDataframe-based framework
 - Analysis tools
- Detector visualization and event display
- R&D activities
 - Simulation with Gaussino
 - Implementation of ACTS/TRACCC
 - Applications of machine learning
 - Etc.
- Software development environment
 - Development process
 - Performance validation


RefDet TDR: Computing Chapter

- Requirements
 - Resource estimation
- Design
 - Data processing flow
 - Computing model
- Computing system
 - Distributed computing
 - High throughput computing
 - High performance computing
- Storage system
 - Data management
 - Disk/Tape system
- Networking

- Cyber Security
 - Authentication and authorization
 - Security monitoring
- System monitoring
 - Monitoring platform

Summary

- The CEPCSW is being developed to
 - support detector R&D and physics potential studies
 - build the offline system of the experiment
- Dirac-based distributed computing platform was deployed
 - technical assessment on DiracX and Data Lake ongoing
- The chapters of offline software and computing of the RefDet TDR
 - being prepared

Thank you for your attention!

