

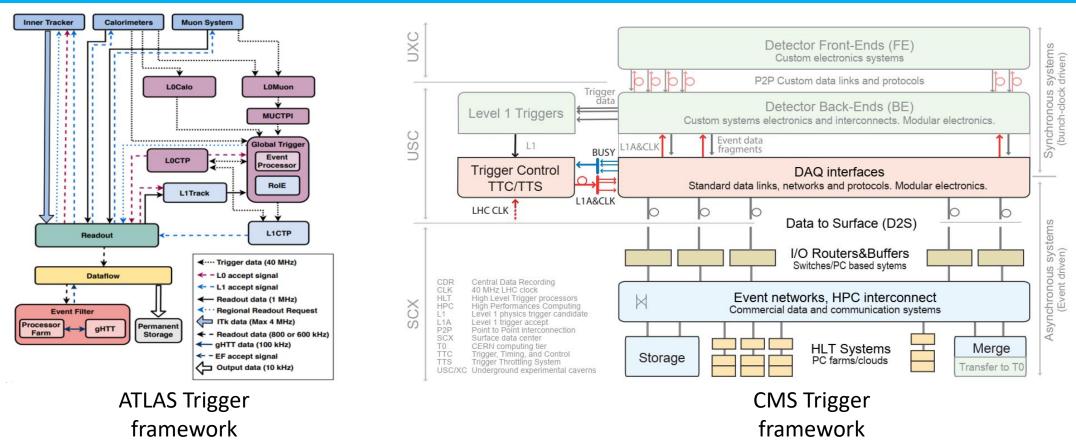
CEPC Electronics System

Wei Wei
On behalf of the CEPC Elec-TDAQ study team

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Global framework of the electronics system
- Detailed design for common electronics
- Research team and working plan
- Summary

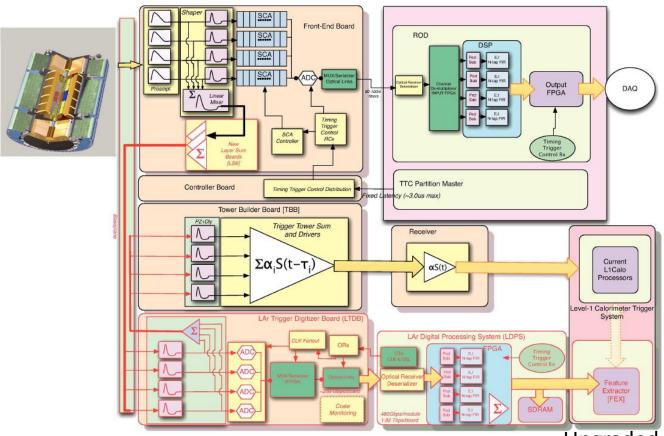
Introduction


- This talk is about the consideration of the general framework of the electronics system for the Ref-TDR of CEPC.
- The general or common electronics blocks, including the consideration of data aggregation, data transmission, powering, and common backend electronics board, will also be introduced.
- Some considerations on backup schemes, including the innovative scheme based on wireless communication, and the conventional schemes based on traditional trigger, will also be discussed.
- This talk relates to the Ref-TDR Ch 11.

Requirement from Sub-D

	Vertex	Pix(ITKB)	Strip (ITKE)	тоғ (отк)	TPC	ECAL	HCAL
Channels per chip	512*1024 Pixelized	512*128 (2cm*2cm@3 4um*150um)	512	128	128	8~16	8~16
Ref. Signal processing	XY addr + BX ID	XY addr + timing	Hit + TOT + timing	ADC+TDC/TOT+T OA	ADC + BX ID	TOT + TOA/ ADC + TDC	TOT + TOA/ ADC + TDC
Data Width /hit	32bit (10b X+ 9b Y + 8b BX + 5b chip ID)	48bit (9b X+7b Y +14b BX + 6b TOT + 5TOA + 4b chip ID)	32bit (10b chn ID + 8b BX + 6b TOT + 5b chip ID)	40~48bit (7b chn ID + 8b BX + 9b TOT + 7b TOA+5b chip ID)	48bit (7b chn ID + 8b BX + 11b chip ID + 12b ADC + 10b TOA)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)
Data rate / chip	1Gbps/chi p@Trigger less@Low LumiZ Innermost	640Mbps/chip Innermost	Avg. 1.01MHz/chi p Max. 100MHz/chip	Avg: 26kHz/chip @ z pole Max: 210kHz/chip @z pole	~70Mbps/m odule Inmost	<4.8Gbps/module	<4.8Gbps/module
Data aggregation	10~20:1, @1Gbps	1. 1-2:1 @Gbps; 2. 10:1@O(10Gb ps)	1. 10:1 @Gbps 2. 10:1 @O(10Gbps)	1. 10:1 @1Mbps 2. 10:1 @O(10Mbps)	1. 279:1 FEE-0 2. 4:1 Module	1. 4~5:1 side brd 2. 7*4 / 14*4 back brd @ O(10Mbps)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)
Detector Channel/mod ule	2218 chips @long barrel	30,856 chips 2204 modules	22720 chips 1696 modules	41580 chips 1890 modules	258 Module	1.1M chn	6.7M chn
Data Volume before trigger	2.2Tbps	2Tbps	22.4Gbps	1Gbps	18Gbps	164.8Gbps	14.4Gbps

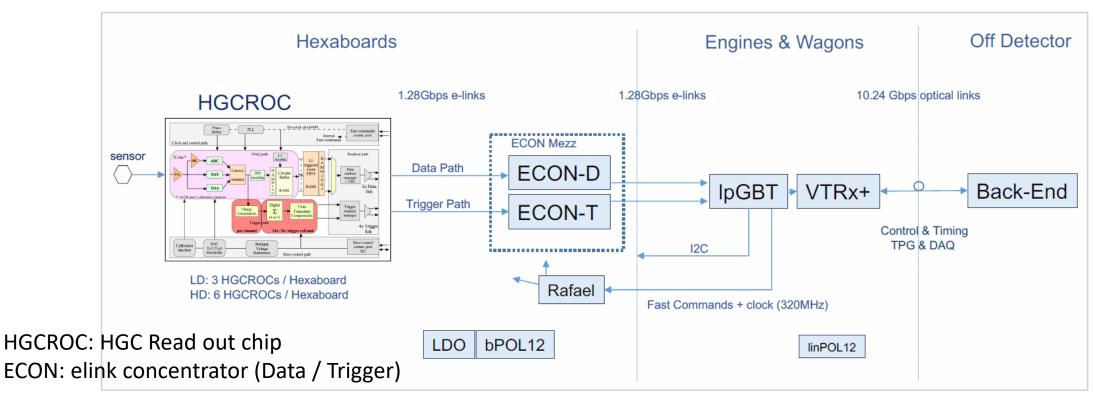
- The first requirement from detector is to readout all the FEE data to the BEE, while keeping all necessary information for trigger
 - Data volume at the module level, data format, and the module data organization were summarized in the table


Technology survey on global framework

- Two main reference frameworks of Electronics-TDAQ system are ATLAS & CMS Trigger system.
- While ATLAS is more like "Frontend trigger" that FEE provides the trigger information, the CMS is more like "Backend trigger" that trigger system communicates only with BEE.

Technology survey on global framework

ATL-CAL-PROC-2017-001



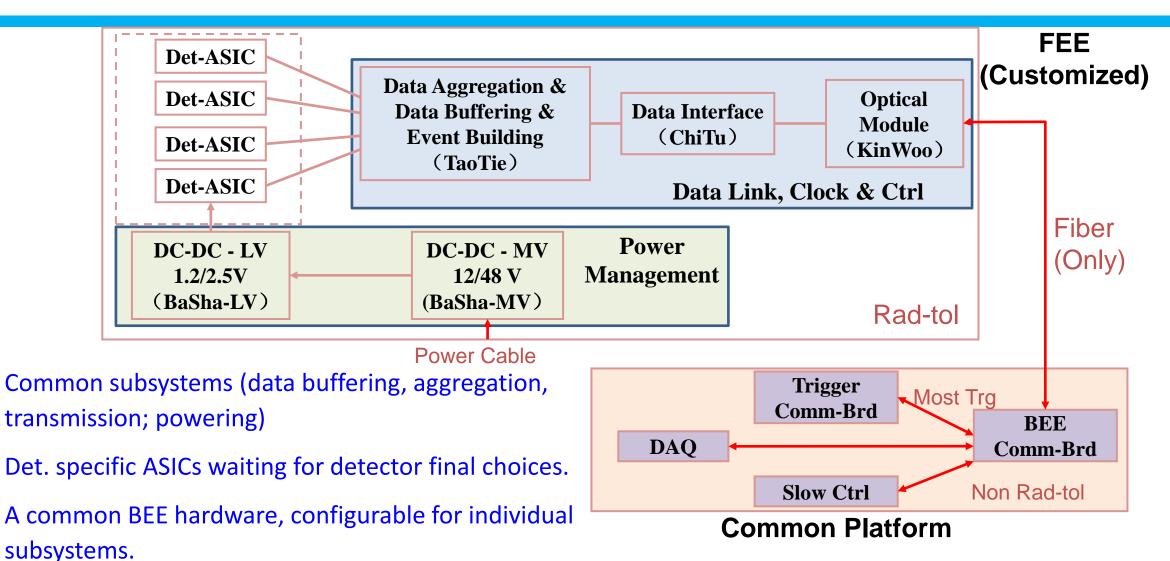
Upgraded LAr readout schemes for Phase-I

- A typical readout framework can be referred to ATLAS detector system(e.g. LAr CAL)
- It can be noted the FEE not only has to generate and send out trigger info.(e.g. SUM), but also store data for trigger latency and accept the trigger decision.

Technology survey on global framework

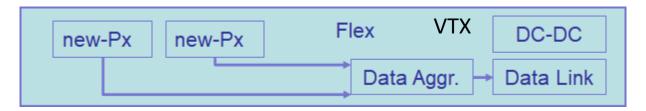
From Paul Aspell, CMS HGCAL An Electronics Perspective

- The electronics readout framework can also be inspired by CMS detector system(e.g. HGCAL).
- It can be observed that the data stream is mostly in a single direction to the BEE, and the electronics system architecture is relatively compact.

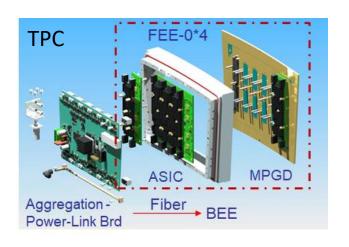

Our choice on global framework

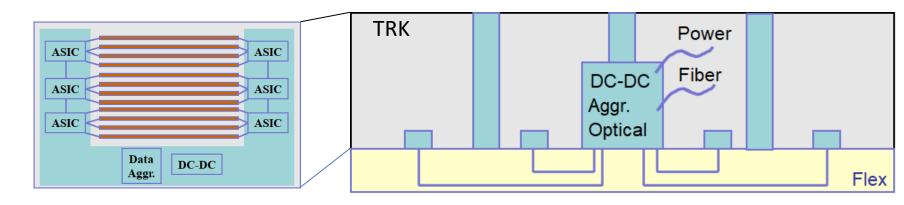
- We choose FEE-triggerless readout (Backend Trigger) as our baseline global framework for the electronics and TDAQ system, for the following reasons:
- 1. Keep the max possibility for new physics, by readout all the information w/o pre-assumed trigger condition.
- 2. Sufficient headroom @ 10Gbps per link(module) kept for the data transmission, concerning the current background rate, also preserving possibility of future upgrade.
- 3. Speed-up the FEE-ASIC iteration & finalization process, w/o the need to consider the undefined trigger algorithm, esp. regarding the potential tight schedule.
- 4. Reading out all the raw data seems more convenient than storing and triggering them based on current knowledge, concerning the background, uncertain trigger latency, and dead area
- 5. Except the FEE-ASIC, the rest part will be designed in a unified style common to all subdetectors, and scalable based on the detector volume.

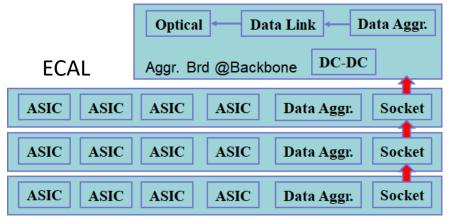
Main Technical Challenges

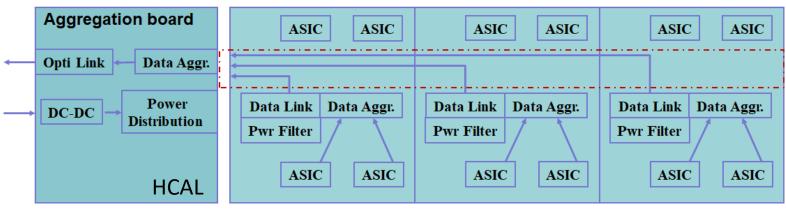

- Background rate from MDI is under optimization, the beam-induced background varies widely at the current stage, which may impact the final readout framework and scheme
- A high performance, reliable data link & optical module is the key part of the framework. It is the only path for not only data, but also high precision clocking system.

Global framework of the Elec system

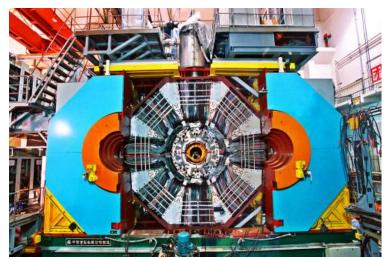


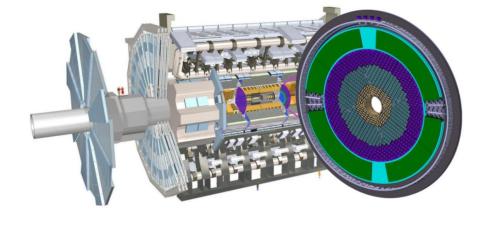

TDAQ interface is (probably) only on BEE


An overview of the Sub-Det readout Elec.



 All sub-det readout electronics were proposed based on this unified framework, maximizing possibility of common design usage.





Previous experience on electronics system

BESIII

JUNO experiment

- Our team have developed the electronics systems of most of the major particle physics experiments in China, including BESIII, Dayabay, JUNO, LHAASO...
- Also in international collaborations as ATLAS HGTD...
- We have extensive experience in typical electronics system design from the FEE to BEE

ATLAS HGTD

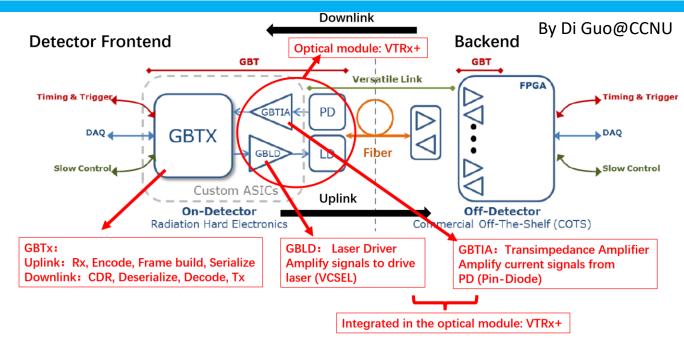
Backup scheme of the framework

- The proposed framework was based on the estimated background rate of all subdet.
- In case of under-estimation or unexpected condition:
- Additional optical links can be allocated to the hottest module.
- 2. In case the background rate is too high for FEE-ASIC to process, Intelligent Data Compression algorithm can be integrated on-chip, for the initial data rate reduction.

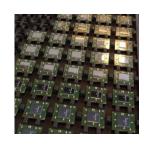
The conventional trigger scheme can always serve as a backup plan, with sufficient on-detector data buffering and reasonable trigger latency, the overall data transmission rate can be controlled.

Common Electronics Components

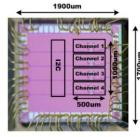
- Common Data Link
- Common Powering
- Common Backend Electronics
- Backup Scheme based on Wireless Communication

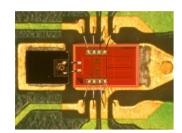

Technical Survey on Data Transmission System

GBT Project:


- Aims to build an high-speed,
 bidirectional optical data transmission
 system between the detector front-end
 and the back-end, developed by CERN
- Core components:
 - GBTx: Bidirectional Serdes ASIC
 - GBLD: Laser driver
 - GBTIA: Transimpedance amplifier
 - Customized Optical Module

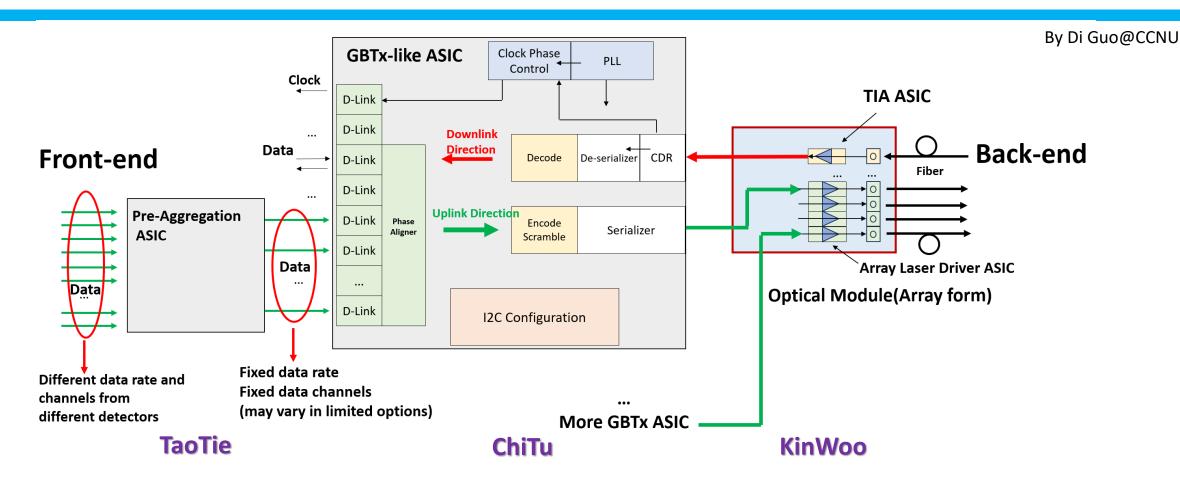
Our choice:


 Build a similar universal bidirectional data transmission system that can be used by different front-end detectors.


GBT Architecture Developed by CERN

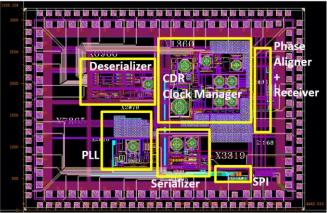
IpGBTx
Uplink: 10.24Gbps
Downlink: 2.56 Gbps

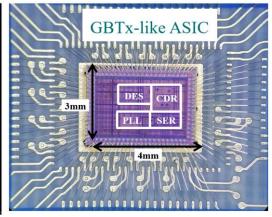
GBLD (LDQ10) 10.24 Gbps x 4ch



GBTIA 2.56 Gbps

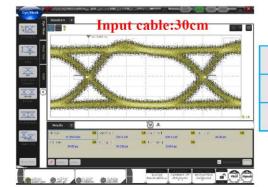
VTRx+ 4Tx + 1Rx Array Optical Module


Detailed design on Data Transmission Structure



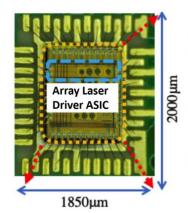
- Pre-Aggregation ASIC (TaoTie): Intend to fit with different front-end detector (different data rates/channels)
- GBTx-like ASIC (ChiTu): Bidirectional serdes ASIC including ser/des, PLL, CDR, code/decode ...
- Array Laser Driver ASIC + TIA ASIC + Customized Optical module (KinWoo)

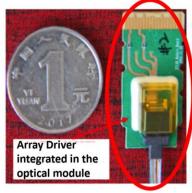
R&D efforts and results on Data Link

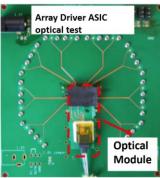

- Self-developed GBT-like prototypes verified:
 - 5.12 GHz PLL + 10.24 Gbps Serializer verified√
 - 2.56 Gbps CDR + 2.56 Gbps Deserializer verified√
 - Phase aligner under test
- 10 Gbps Laser Driver Verified V
- Customized optical module prototype Done V
- The rad-tol fiber will be investigated together with the accelerator clocking system

GBT-like ASIC prototype layout

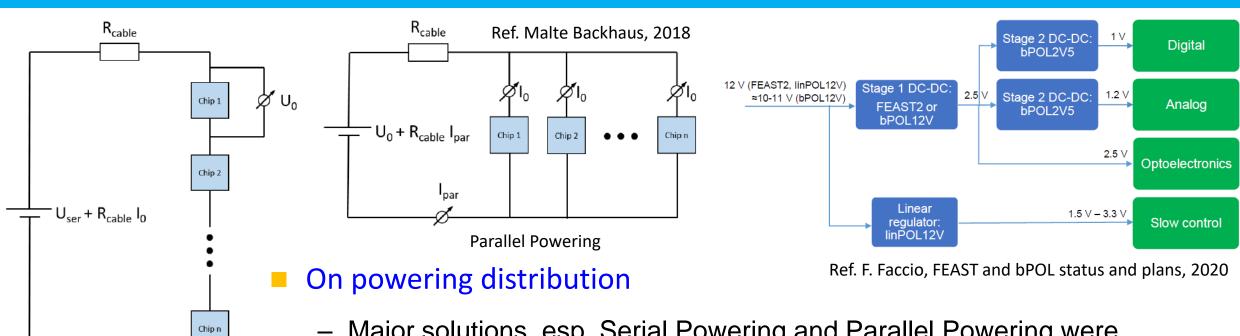
GBT-like ASIC wire-bonding picture


Bit Rate	10Gbps	RMSJ	2.6ps
Rise Time	34.0ps	PPJ	15.3ps
Fall Time	48.9ps	Amp	589.4µW


By Di Guo@CCNU

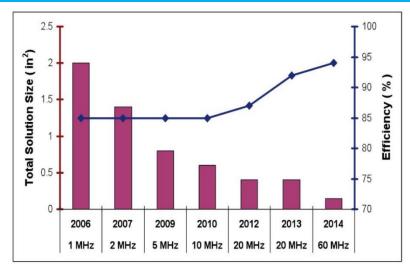

10 Gbps optical eye

10 Gbps optical eye diagram

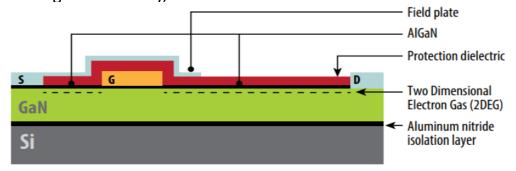


4 x 10 Gbps/ch VCSEL Array Driver with customized optical module

Technology survey and our choice on Powering

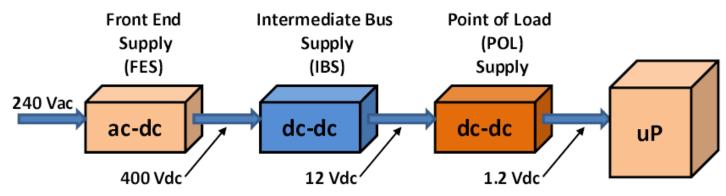

- Major solutions, esp. Serial Powering and Parallel Powering were investigated
- While the superior advantages of Serial Powering on material, cable cross section were noted, the reliability and system complexity issues were also worth a serious concern

Our choice


Serial Powering

We chose (conventional) Parallel Powering as the baseline scheme,
 while continuing to monitor the R&D progress on Serial Powering

Technology survey and our choice on Powering


Higher switching Freq, smaller size, higher efficiency, lower on-resistance

Increased radiation hardness (no SiO2, responsible for most TID effects in Si MOSFETs, in contact with the channel)

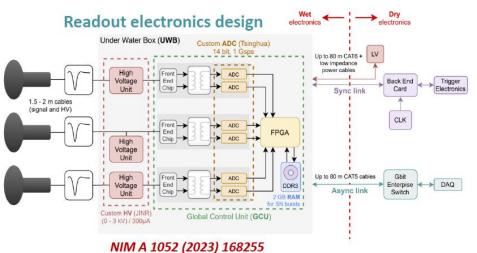
Ref. Satish K Dhawan, 2010

Ref. S. Michelis, Prospects on the Power and readout efficiency

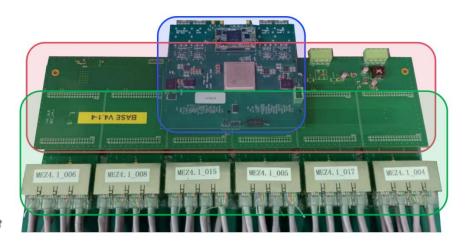
A 400V to 1.2V chain, lower power loss on cable

- Investigation was also conducted to compare the key component schemes of the power module, esp on LDO & DC-DC convertor.
- The GaN transistor has been a game changer in recent years, enabling DC-DC converters to achieve ultra-high efficiency, high radiation tolerance, and noise performance comparable to LDO.
- We choose a GaN-based DC-DC as the baseline power module scheme. This also enables high voltage power distribution, for low cable material and low power loss.

R&D efforts preliminary design on powering

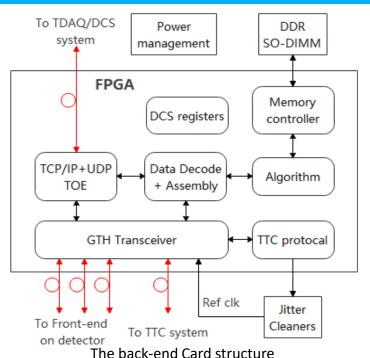

Structure of power distribution systems By Jia Wang@NPU 1.2V/1V 10-12V 3.3V DC-DC Ower Crates Digital Blocks 1.2/1V 2.5V Preliminary radiation evaluation DC-DC Analog Block results of GaN power transistor detector 5/6V... Other Blocks DC-DC Threshold voltage VS Flux of proton Proposed design of BUCK DC-DC converter 1000 900 Vth@ Pre-radiation BaSha INN40FQ015A (INNOSCIENCE) **Series** 700 Vth600 Ramp MMM Vout 500 Generator Driver 400 0.00E+00 5.00E+12 1.00E+13 1.50E+13 2.00E+13 Comparator Flux (p/cm2/s)GaN power transistor The threshold of the tested GaN was relatively stable, after irradiated for 1.2 h @80MeV proton (flux @ 1.7×10^{13} p/cm²) Error amplifier Preliminarily verified its radiation tolerance. More test to be done Reference

20


Compensation

Related R&D and experience on BEE

By Jun Hu@IHEP



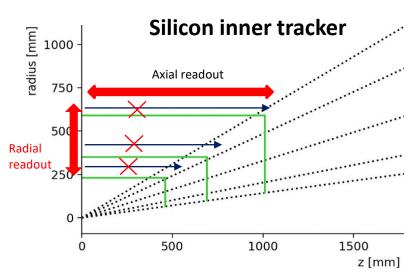
The back-end box for the JUNO experiment

- located between trigger system and front-end electronics,
- Collects the incoming trigger request for trigger system,
- Fanout the synchronized clock and the trigger decisions to front-end electronics.

- Red box: The base board provides the power supply,
- Blue box: Trigger and Time Interface Mezzanine (TTIM) with WR node,
- Green box: The extenders interface with ethernet cables coming from underwater front-end boxes.

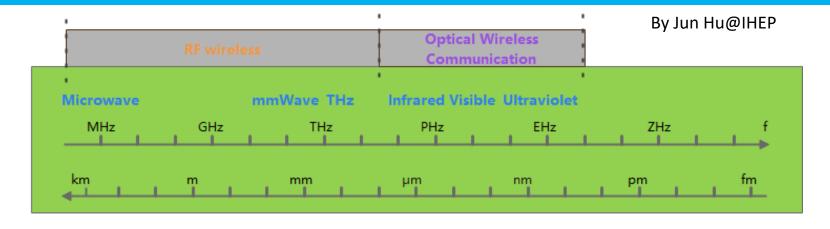
Detailed design on common BEE

By Jun Hu@IHEP

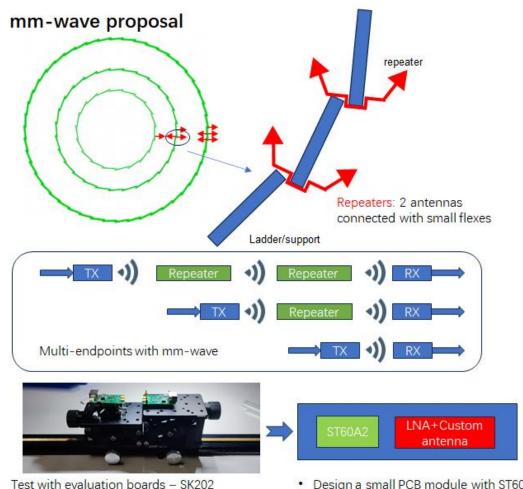

Data aggregation and processing board Prototype for Vertex detector

- Routing data between optical link of front-end and the highspeed network of DAQ system.
- Connect to TTC and obtain synchronized clock, global control, and fanout high performance clock for front-end.
- Real-time data processing, such as trigger algorithm and data assembly.
- On-board large data storage for buffering.
- Preference for Xilinx Kintex UltraScale series due to its costeffectiveness and availability.

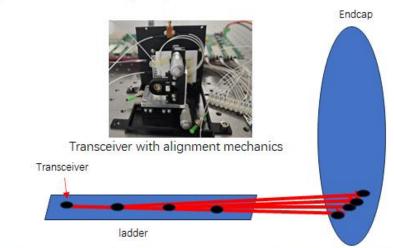
	KC705 (XC7K325 T- 2FFG900C)	KCU105 (XCKU040 - 2FFVA115 6E)	VC709 (XC7VX69 0T- 2FFG1761 C)	VCU108 (XCVU095 - 2FFVA210 4E)	XCKU115
Logic Cells(k)	326	530	693	1,176	1451
DSP Slices	840	1920	3,600	768	5520
Memory (Kbits)	16,020	21,100	52,920	60,800	75,900
Transcei vers	16(12.5Gb /s)	20(16.3G b/s)	80(13.1Gb /s)	32(16.3Gb /s) and 32(30.5Gb /s)	64(16.3Gb /s)
I/O Pins	500	520	1,000	832	832
Cost	2748 (650)	3882(150 0)	8094	7770	

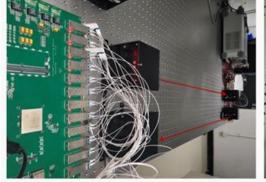

- A cost-driven device selection: FPGA XC7VX690T
- Interface: SFP+ 10Gbps X12 + QSFP 40Gbps X3
- Implement real time FPGA based machine learning for clustering, hit point searching, and tracking algorithms

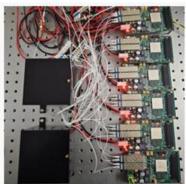
Backup scheme based on wireless communication



- 12-24 cm transmission distance
- Data rate : < 30Mbps
- Axial readout to endcap
 - Only at the outermost layer or dedicated aggregation layer.

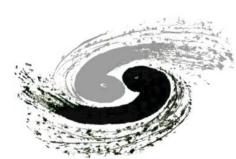

- WiFi (2.4GHz, 5GHz)
 - large antenna volume, high power consumption, narrow frequency band, and high interference
- Millimeter Wave (24GHz, 45GHz, 60GHz, 77GHz)
- Optical wireless communication (OWC) / Free Space Optical (FSO)
- Wireless communication based readout scheme was proposed to mitigate the cabling problem, as a backup scheme
- Three major solutions were investigated through R&D, two were selected with corresponding schemes


R&D efforts and results on WLess Comm



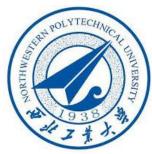
- Based on the commercial 60GHz RF chip ST60A2 transceiver from ST Microelectronics company.
- The transmission speed can exceed 900Mbps when the distance is less than 6 cm.
- Design a small PCB module with ST60A2.
 LNA and custom antenna.
- · Higher bandwidth and longer distance
- . Evaluate the interference with detector
- Under design, cheap and easy
- → custom transceiver + antenna +AIP

Optical wireless proposal


DWDM transceivers +AWG + lens

- · Up to 6-meter free space optical transmission distance
- · 10Gbps X 12 channels bandwidth
- PRBS 31bits error rate < BER-15 @ 10Gbps under 1.6m distance

By Jun Hu@IHEP


Research Team

- A wide collaboration was built involving most of the affiliations in the HEP field in China (~50 people involved in different areas).
- We are working to expand the collaboration, including attracting international colleagues.

- Overall electronics and BEE: IHEP(5)
- Sub-detector readout electronics: IHEP(11), Tsinghua(5), CCNU(3), NPU(7), SDU(4), NJU(3)
- Data link: CCNU(3), IHEP(3), USTC(2)
- Powering: NPU(3), IHEP(2), USTC(2)

Working plan on key R&Ds


- Key R&D left to do towards & beyond the Ref-TDR
 - An lpGBT-like chip series (TaoTie + ChiTu + KinWoo) should be developed as the common data link platform
 - Transmission protocol, including up(typically 8b10b) and down(typically I2C & fast commander), is a key component according the current tech stage
 - GaN based DC-DC module (BaSha Series) is also critical for FEE modules in high radiation environment
 - Further radiation tests should be performed, including TID, SEE, and NIEL
 - A prototype based on wireless communication scheme will be demonstrated to show the feasibility
 - Customized antennas, adapters, and repeaters are being coordinated with the industrial sector in China for a more compact design

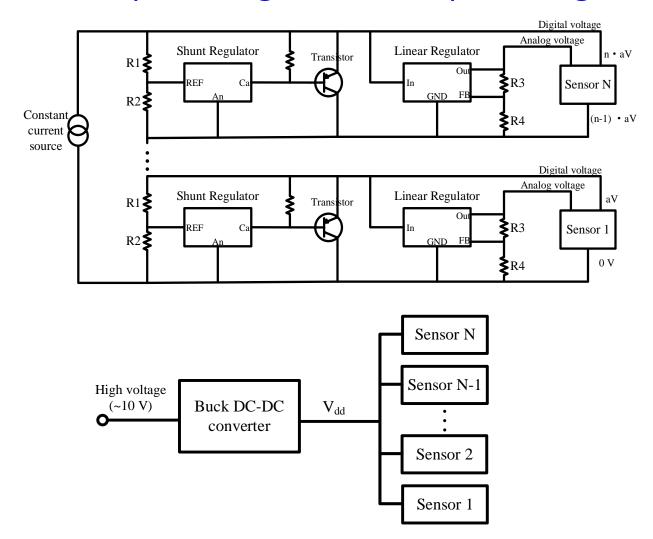
Working plan on schedule for the Ref-TDR

					202	5.6
Overall	2024.8	2024.9	2024.10	2024.12	2025.3	
Electronics system	Specification & background finalization	Sub-Det readout Elec scheme finalization	Overall Electroni scheme finalization		Elec cost Draft1	
Power &	2024.10	2024.11	2025.1		2025.3	2026.1
DC-DC	Irradiation	GaN	DC-DC Contr	oller	DC-DC module	DC-DC BaSha
Module	test	Selection	schematic de	•	performance	module
modale					from simulation	prototype
5	2024.8	2	024.10			2027.6
Data Link	Specification	Р	rotocol			ChiTu Chip
	finalization	(define			prototype
	2024.8		2024.11	2024.12		2026.6
FEE-ASIC	Specification		TDC	FEE-ASIC		TDC finalization
	finalization		prototype test	Main perform evaluation		
					Ref-7	ΓDR
					relea	ase ²⁷

Summary

- We proposed a global framework for the CEPC electronics system based on FEE-Triggerless readout (Backend Trigger) and prepared a readout scheme for each sub-detector according to the framework.
- Previous R&D has shown promising technical feasibility for key components, including data links, common BEEs, and powering. No show stopper is found for the electronics framework & the Sub-D readout.
 - Future R&D is scheduled to demonstrate prototypes of each key technology soon
- Backup schemes based on conventional triggers and innovative schemes based on wireless communication were also considered for more conservative and aggressive approaches, respectively.

Thank you for your attention!


Requirement of the powering system

	Vertex	Pix Tracker	TOF	Si Strip	ТРС	DC	ECAL	HCAL
Detector for readout	CMOS Sensor	HVCMOS	Strip- LGAD	Si Strip	Pixel PAD	Drift Chamber	SiPM	SiPM
Main Func for FEE	X+Y	XY + nsT	X + 50psT	X	E + nsT	Analog Samp.	E + 400psT	E + 400psT
Channels per chip	512*1024 Pixelized	768*128 (2cm*2cm @25um*15 0um)	128	128	128	-	16	16
Voltage@ chip	1.8V@180n m (1.2V@65n m future)	1.2V@55n m (HVCMOS Pixel)	1.2V@5 5nm (TDC)	1.2V@1 30nm	1.2V@6 5nm	±3.3V →1.2V@ GaAs?	1.2V@55n m (TDC)	1.2V@55n m (TDC)
Power@c hip	<200mW/c m2 <0.8W/chip	<200mW/c m2 <0.8W/chip	<40mW/ ch <5W/chi p	5mW/c h 640mW /chip	35mW/c hip	?	20mW/chn 160~320m W/chip	20mW/chn 160~320m W/chip
chips@m odule	10~20:1	<14:1	10:1	10:1	279:4:1	1.2V@FP GA	112~280:1	~10:1
Power@ module	8~16W @1.8V 4.4~8.9A	8~16W @1.8V 4.4~8.9A	50W @1.2V 41.7A	6.4W @1.2V 0.53A	40W @1.2V 33.3A		44.8W @1.2V 37.3A	3.2W @1.2V 2.6A
Other	TID 7.3Mrad/y @ HLumi Z					On FPGA	May use 60V for SiPM	May use 60V for SiPM

- Requirement for the powering system is to power all the FEE modules with high efficiency.
- The power module should also be rad-tolerant, and small size for assembly.
- Power requirements and module organization were collected from the proposed FEE schemes of sub-det. and summarized in the table.

Technology survey and our choices on Powering

Serial powering VS Parallel powering with DC-DC converter

Performance comparasion of the two power distribution system

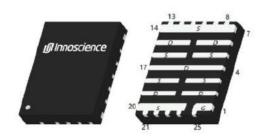
	Serial powering	Parallel powering (DC-DC converter)
Power efficiency	60-80%	60-80%
Power cable number	Reduction by factor 2n	Reduction by factor 2n
System ground potential	Different for every module	One ground level
Noise	Noiseless, even better	More noise due to the switching.
Compatibility with the old power system	Many changes are needed due to the virtual ground.	A few changes
Reliability	Not good. Bypass circuits are required for the faulty modules.	Good

Naming of the common ASICs

ChiTu & Guan Yu

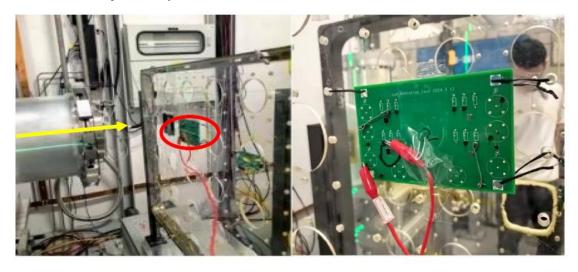
KinWoo in the sun

TaoTie



BaSha carrying a monument

- GBTx-like: ChiTu (赤兔) , the most famous horse in Chinese tales, ridden by the Chinese God of War Guan Yu. It is in charge of transportation with ultra fast speed, just as GBTx-like chip is doing.
- VTRx: KinWoo (金乌) , the bird who lives in the sun in Chinese tales, an avatar of the sun and in charge of the light, just as the VTRx chip does, to convert electronic signal to/from optical.
- Data aggregation: TaoTie (饕餮) , a mythical animal in Chinese tales, who can swallow anything, just as the chip does, to collect all the input data streams.
- DC-DC module: BaSha (霸下), one of the nine sons of the Chinese Loong, who is famous for its strongness and always to bear a monument. Just like the powering system which is the basement and support of all electronics.

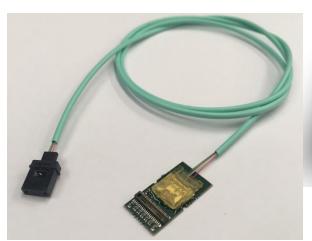

Update on common Power module

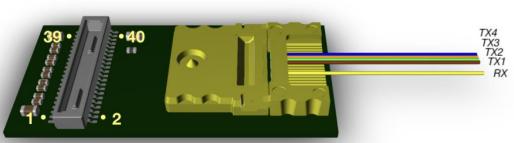
	Vertex	Pix Tracker	TOF	Si Strip	TPC	DC	ECAL	HCAL
Detector for readout	CMOS Sensor	HVCMOS	Strip- LGAD	Si Strip	Pixel PAD	Drift Chamber	SiPM	SiPM
Main Func for FEE	X+Y	XY + nsT	X + 50psT	X	E+nsT	Analog Samp.	E + 400psT	E + 400psT
Channels per chip	512*1024 Pixelized	768*128 (2cm*2cm@2 5um*150um)	128	128	128	-	16	16
Voltage@c hip	1.8V@180n m (1.2V@65nm future)	1.2V@55nm (HVCMOS Pixel)	1.2V@55 nm (TDC)	1.2V@13 0nm (电 压统一、 便宜)	1.2V@65 nm	±3.3V商用 →1.2V@G aAs?	1.2V@55nm (TDC)	1.2V@55nm (TDC)
Power@ch ip	<200mW/cm 2 <0.8W/chip	<200mW/cm 2 <0.8W/chip 尚无设计	<40mW/c h <5W/chip	5mW/ch 640mW/c hip	35mW/ch ip	?	20mW/chn 160~320mW /chip	20mW/chn 160~320mW /chip
chips@mo dule	10~20:1	<10:1 尚无设计	10:1	10:1	279:4:1	需FPGA、 ADC供电, 可统一1.2V?	112~280:1 侧板无DCDC 仅电容	~10:1
Power@m odule	8~16W @1.8V 4.4~8.9A	8~16W @1.8V 4.4~8.9A	50W (???) @1.2V 41.7A	6.4W @1.2V 0.53A	40W @1.2V 33.3A		44.8W @1.2V 37.3A	3.2W @1.2V 2.6A
Other	福照TID 7.3Mrad/y @ HLumi Z		需进一步 优化			On FPGA	可能SiPM可 共用60V中压 电源	可能SiPM可 共用60V中压 电源

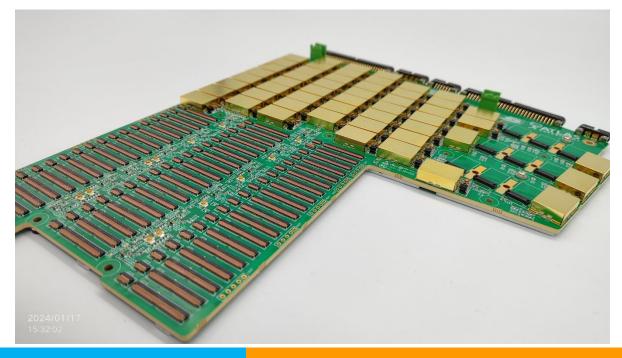
测试仪器: 源表、电源、万用表

- Power requirements summarized according to the current readout schemes of each SubD
- Rad-test of COTS samples initiated, preliminary proved the GaN transistor can survive in the CEPC rad environment
- Recent plan:
 - Key component evaluation

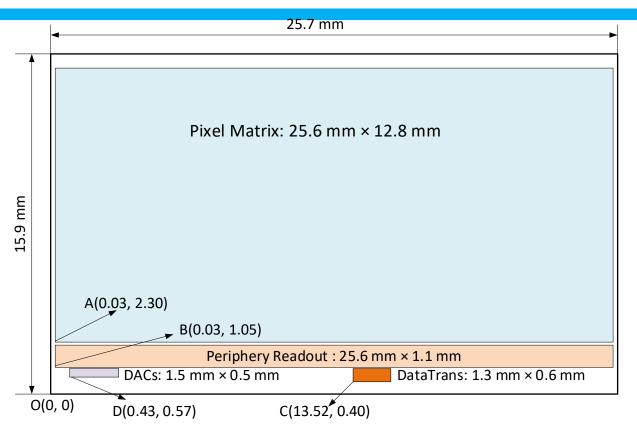
测试PCB固定到样品台上的实物照片(左图中黄色箭头为束流方向)


Preliminary consideration on common BEE


	KC705 (XC7K325T- 2FFG900C)	KCU105 (XCKU040- 2FFVA1156E)	VC709 (XC7VX690T- 2FFG1761C)	VCU108 (XCVU095- 2FFVA2104E)	XCKU115
Logic Cells(k)	326	530	693	1,176	1451
DSP Slices	840	1920	3,600	768	5520
Memory(Kbits)	16,020	21,100	52,920	60,800	75,900
Transceivers	16(12.5Gb/s)	20(16.3Gb/s)	80(13.1Gb/s)	32(16.3Gb/s) and 32(30.5Gb/s)	64(16.3Gb/s)
I/O Pins	500	520	1,000	832	832
Cost	2748 (650)	3882(1500)	8094	7770	


- A common station for fibers from FEE
- Providing data buffers till trigger comes
- Possible calculation resource needed for trigger algorithm
- Number of IOs, port rate & the cost are the major concerns

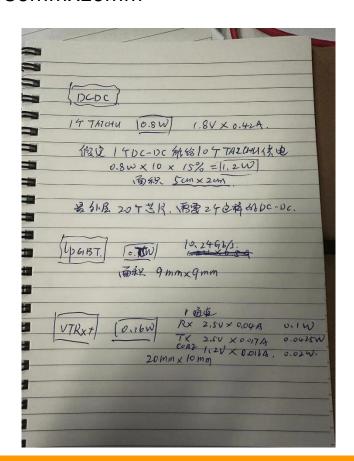
Size of bPol & GBT



VTX像素芯片功耗分布估算

估算说明:

- 太初芯片: 180 nm工艺, 电源1.8 V;
- 65 nm芯片: 电源**1**.2 V;
- Data rate @Triggless-CDR: 4.48 Gbps /chip
 bunch spacing (min.): 25 ns需要快前沿前端
- Data rate @Triggless-TDR (Low Lumi):
 1 Gbps/chip
- Low Lumi@TDR: bunch spacing ~几百ns,像素前端不需要快前沿,Matrix功耗可降低
- 图中芯片坐下角标为坐标原点,标注4个功耗 模块的左下角坐标(X,Y),单位为毫米


	Matrix	Periphery	DataTrans.	DACs	Total Power
太初芯片 @ triggerless (CDR)	304 mW	135 mW	206 mW	10 mW	655 mW
65nm 芯片 @ 1 Gbps/chip (TDR LowLumi)	60 mW	80 mW	36 mW	10 mW	186 mW

Ladder端部热功耗分布

DCDC: lpGBT: VTRX+: 50mmX20mm 9mmX9mm 10mmX20mm

- DCDC: 电源管理芯片
 - TAICHU功耗0.8W(1.8V*0.42A)
 - 单个DCDC最多为10个TAICHU提供电源,效率按85%计算
 - DCDC功耗为0.8*10*15% = 1.2W
 - 如果最外层需要20个芯片则需要2个DCDC
 - lpGBT和VTRX+需要其他种类电源(1.2V, 2.5V),总体功耗不高,~1W,则DCDC功耗为 0.15W
- · lpGBT:数据汇总芯片
 - 0.75W@10.24Gb/s
- · VTRX+: 光电转化芯片
 - 1发1收: 0.193W (RX: 2.5V*0.05A, TX: 2.5V*0.02A, core: 1.2V*0.015A)
- 说明: 1: 图中仅展示ladder一端一面,底面及ladder另一端有同样的配置
- 2: lpGBT及VTRX+的参数为CERN对应芯片手册得到,CEPC最终参数可能有所不同。
- ³⁷Ladder长度及端部器件位置,需结合机械及安装设计来调整

50mmX20mm

Flex厚度和物质分布

25um Kapton

12.5um Acrylicglue 13um Kapton 16um G4_Al 20um Acrylicglue

12.5um Kapton

100um Acrylicalue

250um CFPR

12.5um Kapton

20um Acrylicglue 16um G4_Al 13um Kapton

12.5um Acrylicalue 12um G4_Al 25um Kapton

12.5um Acrylicglue

20um Acrylicglue 12.5um Kapton

13um Kapton

FPC

Adhesive

Support

Adhesive

FPC

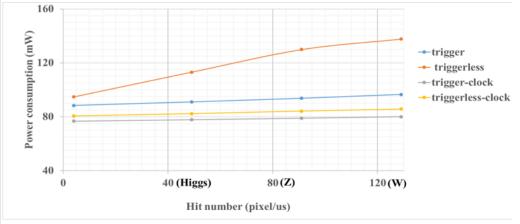
Adhesive

		12.5	um	Coverlay
		20	um	Coverlay adhesive
	layer1	24	um	ED Base Copper
		13	um	Polymide(Adhesiveless)
		12.5	um	Adhesive
	layer2	12	um	ED Base Copper
		13	um	Polymide(Adhesiveless)
		12.5	um	Adhesive
)	layer3	12	um	ED Base Copper
		25	um	Polymide(Adhesiveless)
)	layer4	12	um	ED Base Copper
}		12.5	um	Adhesive
ļ		13	um	Polymide(Adhesiveless)
5	layer5	12	um	ED Base Copper
;		12.5	um	Adhesive
7		13	um	Polymide(Adhesiveless)
3	layer6	24	um	ED Base Copper
)		20	um	Coverlay adhesive
)		12.5	um	Coverlay
)	厚度	288	um	
}				

6层柔性板基于国内Cu工艺(当前阶段)

- 国内工艺当前只能实现基于铜的PCB,如需采用铝材料,需要委托CERN进行加工(accessibility?)
- Long barrel方案,同ladder芯片更多,需要更多层的PCB
 - For Innermost: 4层Flex (now: Cu based, proposed: Al based)
 - For Middle & Outer: 6层Flex (now: Cu based, proposed: Al based)

Backup


Specification calculation- from hit density

2

		Hit density (Hits/c m ² /BX)	Bunch spacin g (ns)	Hit rate (M Hits/cm²)	Hit Pix rate (M Px/cm²)	Hit rate/chip (MHz)	Data rate@trig gerless (Gbps)	Pixel/b unch	FIFO Depth @3us rg latency	Data rate@trigger (Mbps)
CDR	Higgs	2.4	680	3.53	10.59	34.62	1.1	23.5	103.9	105.28
	W	2.3	210	10.95	32.86	107.44	3.4	22.6	322.3	101.248
	Z	0.25	25	10	30	98.1	3.1	2.4	294.3	53.76
TDR	Higgs	0.81	591	1.37	4.11	13.44	0.43	7.96	40.4	213.9?
	W	0.81	257	3.16	9.45	30.90	0.98	7.96	92.8	213.9?
	Z	0.45	23	19.6	58.7	191.9	5.9	4.4	575	118

- TDR raw hit density: Higgs 0.54, Z 0.3; Safety factor: TDR 1.5, CDR 10;
- Cluster size: 3pixels/hit (@Twjz 180nm, EPI 18~25um)
- Area: 1.28cm*2.56cm=3.27cm² (@pixel size 25um*25um)
- Word length: 32bit/event (@Taichu's scale, 512*1024 array)
- Trigger rate: 20kHz@CDR, 120kHz@TDR estimated
 - Trigger latency: 3us(very likely not enough), Error window: 7 bins
 - FIFO depth: @3us * hit rate/chip
 - Data rate=pixel/bunch*trigger rate*32bit*error window

仅外围电路功耗vs计数率

		能力		
	160Mbps	2.56Gbps	4.48Gbps	
PLL	20	34	34	
MUX	8	27.8	44.2	
CMLdriver		36.5	36.5	
LVDS_TX	5	7.5	10	
	33	98.3	114.7	

数据接口功耗vs数据率