

CEPC Gaseous Track Detector

Huirong Qi and Linghui Wu

On behalf the gaseous track detector group

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Motivation and physics requirements
- Technology survey and our choices
- Technical challenges and R&D efforts
- Detailed design including electronics, cooling and mechanics
- Performance from simulation
- Research team and working plan
- Summary

Motivation

This talk relates to the CEPC Physics and Detector Ref-TDR.

- Chapter 5: Gaseous tracker
- Draft of content listed \rightarrow

Chapter	5 Gas	eous trackers
5.1	Physics	s requirements and detection technology
	5.1.1	Physics requirements of Higgs and Tera-Z
	5.1.2	Technology choice and the baseline track detector .
5.2	Pixelate	ed readout TPC detection
	5.2.1	TPC detector and readout electronics
	5.2.2	Mechanical and cooling design
	5.2.3	Challenges and critical R&D
5.3	Perform	nance of TPC tracker
	5.3.1	Overall of simulation framework
	5.3.2	Spatial resolution and particle identification
	5.3.3	Potential for resolution improvement
5.4	Alterna	ative track detector of Drift Chamber in Tera-Z
	5.4.1	PID for high luminosity Z pole at 2T
	5.4.2	Performance and critical R&D
5.5	Cost es	timation

Physics requirement

- CEPC operation stages in TDR: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- Phys. Requirements of the track detector
 - Thousands of hits with high spatial resolution compatible with PFA algorithm (low X_0)
- Beneficial for jet & differential at higher energy
 - Highly requirements for excellent JOI & PID resolution (in Jets) : Provide dE/dx + dN/dx ~ 2-3%
 - BMR < 4% & pursue 3%</p>

Technology survey and our choices

3D high precision resolution track reconstruction with the Ultra light material budget

- High precision resolution ($\sim 100 \ \mu m$) with thousands hits per track
- High momentum resolution (~10⁻⁴ GeV/c) and High capabilities for Particle Identification (~3%)
- Utilize the timing of drift in the z-direction (nano-second)
- A magnetic field parallel to the electric field direction (Higgs: 3T, Tera-Z: 2T)
- Easily installation and replacement modular design
- Considering the technical challenges, performance, risk of detector construction

Baseline track detector: Pixelated TPC

- The track detector system: Silicon combined with gaseous chamber as the tracker and PID
 - Pixelated readout TPC is as the **baseline track detector** in CEPC ref-TDR.
 - Pixelated readout TPC as the main track (MTK) from radius of 0.6m to 1.8m
 - DC is as the **alternative** track detector at Tera-Z.

Technical challenges and R&D efforts

Main Technical Challenges

• Pixelated readout TPC (Baseline)

- Material budget at endcape/barrel $\sqrt{}$
- Occupancy and hit density at Tera-Z $\sqrt{}$
- Ion backflow suppression $~\sqrt{}~$
- Running at 2 Tesla √
 Improved PID √
- **Reasonable channels(ongoing)**
- **Reasonable power consumption (ongoing)**
- DC (Alternative at Tera-Z)
 - dN/dx for PID $\sqrt{}$
 - **Risk the 5.8m wires and tension (ongoing)**

Critical key issues

TPC prototype R&D efforts and results

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to **TPC prototype R&D for Higgs and Tera-Z**
- Achievement by far:
 - **IBF \times Gain ~1 @ G=2000** validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

Ion suppression TPC module R&D

Tracks reconstruction

Highlights of TPC prototype R&D

- Highlights of CEPC pad readout TPC R&D and toward the pixelated readout TPC
 - Massive production and assemble MPGD lab has been setup at IHEP ۰
 - TPC prototype integrated 266nm UV laser tracks has been studied and analyzed the UV laser • signal, all are pretty good to Higgs run.
 - **Easy-to-install modular design** of Pixelated readout TPC for CEPC TDR ۲

Activity international collaboration

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$
 - Collaboration implement improvements in **a pixelated readout TPC for CEPC TDR**

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Detailed design and performance of Baseline: TPC

Detailed design of mechanics

TPC detector	Key Parameters		
Modules per endcap	248 modules /endcap		
Module size	206mm×224mm×161mm		
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m		
Voltage of Cathode	- 62,000 V		
Operation gases	T2K: Ar/CF4/iC4H10=95/3/2		
Total drift time	25μs @ 2.75m		
Pixelated detector	Pixelated Micromegas		
5.8r	mass oKg		

Ultra-light barrel and FEA analysis

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- **Ultra-light material** of the TPC barrel (QM55 CF) : $0.59\% X_0$ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
- Optimization of the connection back frame of the endcap (on going)

Material Duuget of Tru Darre	Material	budget	of TPC	barre
------------------------------	----------	--------	--------	-------

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

• Low material of the TPC endcap

1	15%X ₀ in	i total, including
Readout plane, front-end-elec	ctronics	4%
Cooling		2%
Power cables		9%

Optimization of Gas flow in Chamber

- Optimized design gas uniformity of **99% or more** in large TPC chamber
 - **8** Ø10mm gas inlets + **8** Ø10mm gas outlets (opposite, 90°/endcap)
 - Working gas flow: 300 500 mL/min

Velocity Vector 1

3.84e-02

2.88e-02

1.92e-02

9.59e-03

[m s^-1]

- **Online monitoring system**: O_2 (ppm) and water H_2O (ppm)
- Friendly the gases recycle system and mesh cathode considered

Optimized inlet and outlet in Chamber

pathlines-1

Simulation of gas flow and uniformity distribution in TPC Chamber

Optimization of the readout size

Timepix (55µm×55µm) readout TPC prototype has been validation four times on DESY beams.

- Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power for pixelated readout)
- Simulation results showed that readout size can be optimized at 300µm-500µm.
 - Reasonable readout channels and power consumption need to be studied
 - Focused on 100mW/cm² and 500µm readout for CEPC refTDR (2-phase CO₂ cooling OK!)

Detailed design of electronics and BEC

Pixel Readout Electronics: TEPix development

- Multi-ROIC chips + Interposer PCB as RDL
- Four-side bootable

TEPix: Low power Energy/Timing measurement

- LPower Consumption ~ 0.5mW/ch
- Timing ~ <1LSB(10ns)
- Noise ~ < 300e (even high gain)

FEE ASIC: TEPIX—Test Results in May ¹⁷

Validation and commission of TPC prototype

• **R&D on Pixelated TPC readout for CEPC TDR**

- Pixelated readout TPC ASIC chip developed and 2nd prototype wafer has done and tested.
- The TOA and TOT can be selected as the initiation function in the ASIC chip
- Prototyping pixelated readout TPC detector
 - The validation of the prototype assembled for beam test

Photos TPC modules assembled for the beam test

Photo and layout of ASIC Chip R&D for TPC

Full Simulation of Pixelated readout TPC

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 120cm drift length can be achieved
- dN/dx significantly **improved PID resolution**

Performance of pixelated readout TPC

Parameters	Higgs run	Z pole run	
B-field	3.0 T	2.0 T	
Readout size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷	
Layers per track in r ϕ	2300	2300	
Material budget barrel (X ₀)	0.59 %	0.59 %	
Material budget endcap (X ₀)	15 %	15 %	
σin rφ	120μm (full drift)	400µm (full drift) w. distortion	
σ in z	\simeq 0.6 - 1.0 mm (for zero – full drift)	\simeq 0.6 - 1.0 mm (for zero – full drift)	
2-hit separation in rq	0.5 mm	0.5 mm	
K/π separation power @20GeV	3 σ	3 σ	
dE/dx	< 3.0 %	< 3.0 %	
Momentum resolution normalized: $\sqrt{2}$	a = 1.9 e -5	a = 3.3 e -5	
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.8 e -3	b = 1.5 e -3	

Detailed design of DC for Tera-Z

- CF frame structure
- Length: 5800 mm; Outer diameter: 3600 mm; Inner diameter: 1200 mm
- Thickness of each end plate: 20 mm, weight: 880 kg
- **Gas mixture:** He + iC_4H_{10} (90/10)
- Cell size: 18mm x 18mm, number of cells: 26483
- Material: 0.16% X₀ for Gas+Wires, 0.21%X₀ for inner and outer cylinders
- Finite element analysis: Endplate deformation 2.7mm, CF frame deformation 1.1mm

International collaboration of DC

- Beam tests at CERN organized by INFN group (leaded by Franco Grancagnolo and Nicola De Filippis) :
- Cooperation on
 - Data taking
 - Data analysis
 - Reconstruction algorithm study

Research Team

- Core of the research team (10 staffs + TPC group)
 - IHEP: Huirong Qi, Linghui Wu, Guang Zhao, Mingyi Dong, Yue Chang, Xin She, Jinxian Zhang, Junsong Zhang
 - Tsinghua: Zhi Deng, Canwen Liu, Guanghua Gong, Feng He, Jianmeng Dong, Yanxiao Yang
- Collaboration of the research team (6 staffs +10 students + 5 LCTPC members)
 - **TPC:** CIAE, Shandong University, Nankai University, Zhengzhou University and Liaoning University
 - **DC:** Wuhan University, Jilin University
 - **TPC and DC**: DRD1 collaboration and LCTPC collaboration
- Organization of team
 - Regular weekly meeting from April 2024
 - Collaboration regular meeting with some international groups

Working plan

• Short term working plan (before June 2025)

- Optimization of TPC detector for CEPC ref-TDR
- Prototyping R&D and validation using FEE
 - mechanics, manufacturing, beam testing, full drift length prototype
- Performance of the simulation and optimize deep learning algorithm

Long term working plan (about three years)

- Development of the pixelated TPC prototype with low power consumption FEE ASIC
 - Beam test collaborated with LCTPC collaboration
- Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion along the drift length

Summary

- TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e⁺e⁻ colliders, espial to the high luminosity Z pole run at future e⁺e⁻ collider. DC will be as the alternative detector at Tera-Z.
- Pixelated TPC is choose as the baseline detector as main track in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4 at IHEP. Some validation of TPC prototype have been studies.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences. All will input to CEPC ref-TDR in next some months.

Thank you for your attention!

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Backup of TPC R&D

Physics requirement

28

Physics requirement - 2

- ear W HEP AC 2023 OF CEPC Technical Design Report Accelerator Accelerator The CEPC Study Group December 2023
- CEPC operation stages: 10-years Higgs → 2-years Z pole → 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Detector should primarily meet Higgs and run at Z also.

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2 × 10⁷ Gy [11].

CEPC- TDR p116

Occupancy/hits desnity R&D and results

- Low voxel occupancy : 1E-5 to 1E-6 (cite#1)
- At 2 E36 with Physics event only, even bunch distribution(cite#2).
 - Pixelated readout much **LOWER** inner most occupancy (**0.6m inner radius**)
 - Pixelated readout can easily handle a high hits rate at Z pole. (cite#3)
 - The data at the inner radius @40M BX Z pole@1 Module ~0.05Gbps(Maximum).

Ion back flow R&D and results

• Achievement by far from TPC module and prototype:

600

800

1000

1200

1400

ADC Channels

- Supression ions hybrid TPC module
 - IBF × Gain ~1 at Gain=2000 validation with TPC module
- Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ by TPC prototype
- dE/dx for PID: <3.6% (as expected for CEPC baseline detector concept)
- Graphene foil suppression (on going @ Shangdong University)

Data

background
 background
 MM:Full energy peak
 GEM-MM:Escape peak

GEM-MM:Full energy peak

Gaus+background fit

IBF of double mesh MM @USTC/Jianbei Liu

Cite#4: DOI:10.1016/j.nima.2020.164282 Cite#5: CERN-OPEN-2021-012. 2021 Cite#6: IJMPA 36.22 (20212142015

2000

1500

Drift Region 4m

Transfer Region 1.4m

e Reaion 0.128m

Hybrid TPC module and Double-mesh detector module

Tera-Z at 2T R&D and results

Estimation of the spatial resolution using pixelated readout.

- The granularity and the transverse diffusion considered.
- TPC can work well at the 2T B-field without any $\mathbf{E} \times \mathbf{B}$ effect.
- Distortion will be considered proportionally at Z (Backup slide) Pad readout:

$$\sigma_{r\phi}^{\rm pad} = \sqrt{(\sigma_{r\phi0}^{\rm pad})^2 + \sigma_{\phi0}^2 \sin^2(\phi_{\rm track}) + L \frac{D_{r\phi}^2}{N_{\rm eff}} \sin(\theta_{\rm track}) \left(\frac{6}{h_{\rm pad}}\right) \left(\frac{4.0}{B}\right)^2}$$

-
$$\phi_{\text{track}} = 0^{\circ}$$
, $\theta_{\text{track}} = 90^{\circ}$

- $\sigma_{r\phi 0} = 50 \mu m$
- $N_{eff} = 22$
- $D_{r\phi} = 46.9 \mu \text{m} / \sqrt{\text{cm}}(2\text{T}), 32.3 \mu \text{m} / \sqrt{\text{cm}}(3\text{T})$

Pixel readout:

$$\sigma_r^{\rm pixel} = \sigma_{r\phi}^{\rm pixel} = \sqrt{(\sigma_{r\phi0}^{\rm pixel})^2 + LD_{r\phi}^2 \left(\frac{40 \text{ T}}{B}\right)^2}$$

-
$$\sigma_{r\phi 0} = \frac{500}{\sqrt{12}} = 144 \mu m$$

- $D_{r\phi} = 46.9 \mu m / \sqrt{cm} (2T), 32.3 \mu m / \sqrt{cm} (3T)$

Update TPC parameters to CEPCSW software package

- All parameters of TPC detector **completed** to input CEPCSW software package.
 - Based on the update geometry of TPC as the track detector in CEPC TDR

Xin She

Geometry of Endcap

Updated material budget of TPC barrel and endcap

B: Static Structural

Total Deformation

21.128 10.564

🗖 0 Min

Unit: um Time: 1 2024/4/25 10:25 95.074 Max 84.511 73,947 63,383 52,819 42.255 31.691

Low material of the TPC endcap ٠

15%X ₀	in total, including
Readout plane, front-end-electronic	s 4%
Cooling	2%
Power cables	9%

Low material of the TPC barrel ٠ 0.59% X₀ in total, including

Material budget of TPC barrel

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

FEA analysis results of TPC

Ultra-light material of the TPC barrel

High-strength carbon fiber material QM55

For thin-walled structures, the shear stresses (剪切应力) from deformations of 0.1mm may occur that exceed the shear stress of the carbon fiber to lead a risk of fracture.

Detailed design of electronics and BEC

FEE ASIC: TEPIX—Test Results in May

- Power Consumption ~ 0.5mW/ch
- Timing $\sim <1LSB(10ns)$
- Noise ~ < 300e (even high gain)

Parameter	Spec	
Number of channels	128	
Power Consumption	Analog<30mW	
Power Consumption	Digital<30mW	
ENC	~300 e(high gain)	
Dunamic Bango	25fC(high gain)	
Dynamic Kange	150fC(low gain)	
INL	<1%	
Time Resolution	<10ns	

Updated of the hits density & occupancy at Tera-Z with BK

 $\rho_{sc}(r)$ (single BX) distribution Left & $\rho_{sc}(r)$ (steady state) Right

#3. Improved dE/dx+dN/dx √

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 50cm drift length can be achieved
- dN/dx has significant potential for **improving PID resolution**

Cite#5 DOI: 10.22323/1.449.0553 Cite#6 EPS-HEP 2023 talk by Yue Chang Huirong Oi

Simulation of TPC detector under 3T/2T and T2K mixture gas

#4. Ion backflow suppression

- Achievement by far from TPC module and prototype:
 - Supression ions hybrid TPC module
 - IBF × Gain ~1 at Gain=2000 validation with TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ by TPC prototype
 - dE/dx for PID: <3.6% (as expected for CEPC baseline detector concept)
 - Graphene foil suppression (on going @ Shangdong University)

E_d =200V/cm , E_t =200V/cm , V_{Mesh} = 400V Data background MM:Full energy peak GEM-MM:Escape peak T2K gas GEM-MM:Full energy peak Gaus+background fit Ar/iC4H10(95/5) 1500 Transfer Region 1.4m IBF*Gain: 5 Avalanche Region 0.128mm 5000 5000 250 260 270 280 290 220 240 300 400 600 800 1000 1200 1400 V_{GEM} [V] ADC Channels Cite#7: DOI:10.1016/j.nima.2020.164282

IBF of double mesh MM @USTC/Jianbei Liu

Hybrid TPC module and Double-mesh detector module

Huirong Qi

Cite#8: CERN-OPEN-2021-012. 2021

Cite#9: IJMPA 36.22 (20212142015

#7. Beamstrahlung and distortion √

- Maximum distortion with e+e- to qq at Z pole (Physics events only)
- Maximum distortion under the different Beamstrahlung background $(\times 10, \times 50, \times 100$ times Physics events)
 - MDI design at Z need carefully optimized with MDI group in CEPC

Huirong Oi

Noise of FEE VS Separation power

Estimation of the **FEE readout** using Micromegas.

- The noise of the FEE should be kept the lower to keep the reasonable gain of the detector (-2000).
- The noise of the FEE reached to 100e.

Pad size optimization

- Pad size optimization ongoing.
 - Optimized the pad size to validate the PID performance

 dN/dx (and tracking) can be beneficial from smaller pad size

 $\rho_{cl} \approx 30 cm^{-1} \Rightarrow Pad size \approx 300 \mu m$ (To detect single e⁻)

 Need to find out the optimal pad size considering cost/power consumption

https://doi.org/10.1088/1748-0221/17/11/P11027

Detailed design of electronics and BEC

FEE ASIC: TEPIX

- Charge Sensitive Preamplifier(CSA)
- CDS amplifier provides additional gain and noise shaping
- Wilkinson type ADC each pixel
- Timing discriminator with Time of Arrival information

Detailed design of electronics and BEC

- Power consumption relative with the high granularity readout
 - Pad readout TPC@1mm×6mm pad size
 - Total channels: 10^6 ; Total power: <10 kW using 2-phase CO₂ cooling
 - Pixelated readout TPC at the endcap
 - Total power: <10 kW
 - 2-Phase CO₂ cooling
 - <100mW/cm²

DOI: 10.1088/1748-0221/15/05/P05005

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm ²
No. of Channels	5.7× 10 ⁵	$1-2 imes10^6$	$5.7 imes10^5$	2 x×10 ⁶
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm

Detailed design of mechanic and cooling

- Readout electronics will require a cooling system. **2-phase CO2-cooling** is a very interesting candidate.
 - A fully integrated AFTER-based solution tested on 7 Micromegas modules during a test beam.
- To optimize the cooling performance and the material budget **3D-printing of aluminum** is an attractive possibility for producing the complex structures required.
 - A prototype for a full module has been **validated at the international collaboration**.

Cite#8: DOI 10.48550/arXiv.1403.7717 Cite#9: DOI 10.1088/1748-0221/10/08/P08001 Cite#10: DOI 10.1088/1742-6596/2374/1/012149

Backup of DC R&D

FEE-1: Rad-hard analog preamps 100mW/ch -> ~2.6kW in total **1.3kW** for each end plate, air cooling no additional material budget

FEE-2:

ADC and FPGA board for data readout and buffering, located in low dose region 0.5Gbps/12 channels

CF frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder Length: 5800 mm; Outer diameter: 3600 mm; Inner diameter: 1200 mm Thickness of each end plate: 20 mm, weight: 880 kg Gas mixture: He + iC_4H_{10} (90/10) Cell size: 18mm x 18mm, number of cells: 26483 Material: 0.16% X₀ for Gas+Wires, 0.21%X₀ for inner and outer cylinders Finite element analysis: Endplate deformation 2.7mm, CF frame deformation 1.1mm

Huirong Oi

48

Full simulation study

Garfield++ based parameterized simulation implemented Parameters of preamplifier and noises from experiment Reconstruction with both traditional method and machine learning developed

Better than 3σ of K/ π separation power achieved up to 20GeV/c

K/π separation power vs. momentum

~10% improvement for reconstruction with ML

Detailed design of DC at Tera-Z

FEE 1: Radiation hardness FEE with preamplifier

Overall mechanical design

- CF frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder
 - Length: 5800 mm
 - Outer diameter: 3600 mm; Inner diameter: 1200 mm
 - Thickness of each end plate: 20 mm, weight: 880 kg

Finite element analysis

- Max Mises stress of End plate : 30MPa
- Endplate deformation 2.7mm
- Max Mises stress of CF frame : 235MPa
- CF frame deformation 1.1mm

Waveform-based full simulation

