

CEPC Electromagnetic Calorimeter

Yong Liu (IHEP), for the CEPC calorimetry team

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and option selection
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics
- Performance from simulation
- Research team and working plan
- Summary

Introduction

Cl

RefDet TDR Outline

apter	6 Electromagnetic calorimeter
6.1	Introduction
6.2	Requirements
6.3	Survey of ECAL technical options
	6.3.1 Silicon-tungsten ECAL
	6.3.2 Scintillator-tungsten ECAL
	6.3.3 Crystal ECAL
	6.3.4 ECAL option selection for the reference detector
6.4	Critical issues and technical challenges
6.5	R&D efforts and results
6.6	Designs including electronics, mechanics and cooling
6.7	Performance from simulation and beamtests
6.8	Summary

Separation of Higgs hadronic decays in jets

This talk is about the design and developments of the electromagnetic calorimetry system (related to the RefDet TDR Chapter 06)

■ General remarks: the calorimetry system (in the CEPC reference detector) will based on the particle-flow paradigm → high granularity in 3D

– Aim to achieve an unprecedented Boson Mass Resolution (BMR) of 3 – 4% O7.08.24 CEPC Detector Ref-TDR Review

ECAL requirements

Parameter	Conservative	Ambitious	Remarks
EM energy resolution	$\frac{\sigma_E}{E} = 15\% / \sqrt{E(GeV)} \oplus 1\%$	$\sigma_E/E = 3\%/\sqrt{E(GeV)} \oplus 1\%$	Jet performance; flavor physics
Longitudinal Granularity and Depth	26 – 30 layers, tot	Full containment of EM showers	
Transverse Granularity	10×10	$H \rightarrow gg$ (gluon jets); $Z \rightarrow \tau \tau$	
Signal Dynamic Range	0.1 MIP - 3	0.1 MIP as trigger threshold; Bhabha electrons at 360 GeV	
Time Resolution (1-MIP signal)	1 ns	Bunch crossing ID; timing to improve clustering and hadron performance	
Power Consumption (per channel)	15 m\	o(1M) channels in final detector	

Technical option survey

Three major options for CEPC electromagnetic calorimeter

- Silicon-tungsten (SiW): sampling calorimeter
- Scintillator-tungsten (ScW): sampling calorimeter
- Crystal: homogeneous calorimeter (new!)

07.08.24PFA calorimetry: various options explored in the CALICE collaboration in past 20 years

SiW-ECAL option

Large area silicon sensors (pixelated) interleaved with CuW plate (compact showers)

Baseline option in CEPC CDR: extensive Higgs physics studies

Hardware activities in CALICE collaboration, no involvements of CEPC-calo groups
 Application in CMS-HGCAL project (silicon-sector) many synergies

SiW-ECAL option: synergies with HGCAL

Established two centers at IHEP for CMS-HGCAL project

- MAC (Module Assembly Center) Beijing Site, with 6 MACs around the world
- SQC (Sensor Quality Center) Beijing Site, with 5 SQCs around the world

ScW-ECAL option

Scintillator strips + SiPMs, interleaved with CuW plate (compact showers)

Alternative option in CEPC CDR

Strong involvements of Chinese and Japanese groups in CALICE collaboration _{07.08} Development of a technological prototype, followed by successful beamtests at CERN

8

ScW-ECAL option

ScW-ECAL tech. prototype developed in 2016-2020 (Effective) Transverse granularity of 5×5 mm² 6,720 channels, 32 longitudinal sampling layers (22X0)

Successful beamtest campaigns at CERN in 2022-2023

07.08.24• Collected data sets with various beam particles TDR Review

4D Crystal ECAL option

- A new option: development started since ~2020
- Compatible for PFA, Boson mass resolution (BMR) < 4%</p>
- Optimal EM performance: $\sigma_E/E = 3\%/\sqrt{E}$
- Minimal longitudinal dead material: orthogonal arranged bars
 - 3D positioning with two-sided readout for timing

- BGO bars in $1 \times 1 \times \sim 40 \ cm^3$
- Effective granularity $1 \times 1 \times 2 \ cm^3$
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

Technical options: comparison and option selection

Technical Option	Silicon-Tungsten ECAL	Scintillator-Tungsten ECAL	Crystal ECAL
EM energy resolution	$\sigma_E/E = 17\%/\sqrt{E(GeV)}$	$\sigma_E/E = 13\%/\sqrt{E(GeV)}$	$\sigma_E/E = 3\%/\sqrt{E(GeV)}$
Particle-Flow Algorithm(s)	Arbor; Pandora	Arbor; Pandora	New dedicated PFA (ongoing developments)
Jet Performance (with a full detector)	Bos		
Technical Readiness Level (prototypes, beamtests)	Physics Prototype (2006-2010) Technological Prototype (2011- now)	Physics Prototype (2007) Technological Prototype (2016 - 2021)	First Physics Prototype (2022- 2024)
Novelty Level	ILD (proposed in <u>ILC TDR, 2013</u>), concepts: <u>CLICdp CDR (2012</u>), <u>CEP</u>	A completely new concept proposed by the CEPC team	

Option selection

• Crystal ECAL, as a novel option, shows significantly better EM performance 07.08.24 CEPC Detector Ref-TDR Review Selected as a baseline option for the CEPC reference detector

Main Technical Challenges

High granularity: ~1M channels

- Multi-channel ASIC embedded in readout boards
- Hermetic design: minimum space for mechanics and services (cooling, cabling)
- Low power consumption, given material budget and hermicity
- Mass production capability and scalability to a final detector
- Beam-induced backgrounds
 - Data throughput, pile-ups (events + backgrounds)

Irradiation damages

- SiPM, crystal: monitoring, calibration, annealing
- ASIC, FPGA: radiation tolerant

In-situ calibration system (on-detector)

– SiPMs, crystals due to irradiation (instantaneous, long-term) and temperature

Crystal ECAL: specifications

Key Parameters	Value	Remarks
MIP light yield	~200 p.e./MIP	Ensure EM resolution $\sim 3\%/\sqrt{E}$
Energy threshold	0.1 MIP	Balance between S/N and dynamic range
Crystal non-uniformity	< 1%	Along the crystal length and between crystals
Dynamic range	0.1~3000 MIPs / channel	Maximum energy deposition with 360 GeV Bhabha
Timing resolution	~500 ps @ 1 MIP	Bunch crossing ID; clustering and hadron performance
Temperature stability	Stable at 0.05°C	Reference from CMS ECAL; validation with beamtest

Detector requirements

- Moderate MIP light yield
- Good uniformity
- Optimal time resolution
- Large dynamic range
- Moderate S/N ratio

Hardware activities: addressing crucial issues

- SiPM response linearity
- Uniformity of long crystal bar
- Time resolution: different crystal dimensions
- Dynamic range of electronics
- Energy response of crystal module

R&D efforts and results: MIP response, uniformity

- Geant4 full simulation with digitization: shower studies, requirements
- Dedicated setup with radioactive sources for energy resolution, response uniformity

R&D efforts and results: dynamic range

- Simulation of high energy electrons: maximum energy per crystal
- Test-stand with pico-second laser: SiPM non-linearity effects (with various pixel pitches)
- Beamtest of crystal-SiPM units with a state-of-art chip: dynamic range of both SiPM and ASIC

~30 GeV as max. energy deposition per crystal bar

2023 DESY beamtest: crystal-SiPM units and a state-of-art front-end chip with EM showers induced by 5 GeV electrons

R&D efforts and results: timing studies

Dedicated beamtests for timing studies with MIP and EM showers

Timing performance within EM showers

- 5GeV e^- beam to test 40cm BGO bar with 25 μm SiPM
- ~200 ps within EM showers (>12 MIPs)

Timing performance with MIP-like particles

- 10 GeV π^- beam to scan one 40cm BGO bar along its length
- 1-MIP timing resolution: 735 ps for 2 ends \rightarrow 520 ps single end

4D Crystal Calorimeter: First Physics Prototype

Custom-made readout boards (144-ch), equipped with $6_{ASIGs} (CITIROC_1A) \rightarrow Custom-made ASIC in planning 17$

Beam tests: 4D Crystal Calorimeter Prototype

Beam tests: 4D Crystal Calorimeter Prototype

Ongoing studies on fresh/preliminary results on EM performance

- Limitations of commercial ASIC: pedestal shifts (stability), High Gain and Low Gain switch
 - Implemented into digitisation model: generally can reproduce beamtest data
- Gaussian fitting to reconstructed energy (asymmetric distribution) \rightarrow Crystal Ball function

Crystal ECAL: impacts of temperature stability

Energy Resolution σ_E/E_{beam} [%] ESY setup w/ cooling, Stoc.=3.65%, Cons.=1.169 DESY setup w/o cooling Stoc =3.81% Passive cooling: $\sigma_F / \mathbf{E} = \mathbf{3}, \mathbf{8}\% / \sqrt{E} \oplus \mathbf{2}, \mathbf{9}\%$ Active cooling: $\sigma_{\rm F}/{\rm E} = 3.6\%/\sqrt{E} \oplus 1.2\%$ 04 1.5 2 2.5 3 4.5 3.5 EReco [GeV] Temperature stability is crucial to crystal ECAL

- Significant impact to constant term of EM resolution

– Specification on stability of ± 0.05 °C is validated with beamtest data

ECAL mechanics design

A first design of ECAL mechanics with active cooling

Barrel ECAL parameters

Parameter	Value / mm
Inner radius	1900
Outer radius	2200
Length	5900
Crystal length	~ 400
# Modules in $r - \phi$	32
# Modules in Z	15
ϕ Projectivity tilt	12°
# Layers	28

Endcap ECAL design

21

• 07 Support structure is based on Carbon-Finbers for BGO modules (in cyan)

ECAL mechanics design: FEA simulation

FEA simulation studies on ECAL mechanics (ongoing): further iterations + validation

ECAL module integration

FEA simulation studies on ECAL mechanics (ongoing): further iterations + validation

Cooling system

Readout electronics for ECAL

Beam-induced backgrounds: simulation studies

Simulation studies on beam background in Higgs mode: crystal ECAL barrel

- Including physics events + backgrounds (major contributions from pair production)
- With threshold, rate can be significantly reduced: 100kHz (0.1 MIP threshold) from 700kHz (0 threshold)
- Need to further investigate impacts of pile-ups, and endcap regions

Performance in simulation: separation power

- Separation power of close-by particles: key performance in PFA
 - $-\gamma \gamma$ separation: 100% efficiency for distance > 20mm
 - $-\gamma \pi$ separation : 100% efficiency for distance > 50~100mm

Physics performance in simulation: $H \rightarrow \gamma \gamma$

Physics process: $ee \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$ in $\sqrt{s} = 240$ GeV

- Full simulation and digitization, with energy correction in crack regions

Physics performance in simulation: $H \rightarrow gg$

Physics process: $ee \rightarrow ZH \rightarrow \nu\nu gg$ in $\sqrt{s} = 240$ GeV

- Full reconstruction of two gluon jets in the full CEPC detector
- Dedicated developments of PFA for long crystal bars

Alternative ECAL design: stereo crystals

Stereo design with long crystal bars inclined

- Longitudinal segmentation by tilting crystal bars
- Single-end readout: 50% less readout channels than crossed bars (two-sided readout)

Simulation studies on reconstruction: promising separation power of two particles

Ongoing designs on mechanics, cooling and integration

Taskforce and collaborations

Taskforce working on CEPC ECAL

- Detector (hardware/software): physicists (8), postdocs (3), students (8)
- Engineers in electronics (3) and mechanics (1)
- Many members deeply involved in large-scale experiments/projects
 - BES-III Experiment: Electromagnetic Calorimeter with 6,240 CsI(Tl) crystals
 - JUNO Experiment: 20,000 ton ultra-pure liquid scintillator
 - CMS HGCAL project for HL-LHC: ~5,000 silicon modules (8-inch) at MAC-Beijing
- Institutions as working groups in CALICE and DRD6 collaborations
 - IHEP, SIC-CAS, SJTU/TDLI, USTC, SCNU
 - Shinshu U. and U. Tokyo (on ScW-ECAL option)

Working plan

Near future activities (in 2024): towards reference detector TDR

- Beam-induced backgrounds: simulation in barrel and endcap regions, impacts to physics performance, estimate of data throughput
- Mechanics and cooling: refine FEA simulations, validation by dedicated tests
- Detector: fully exploit beamtest data on EM performance and validation studies
- Software: geometry updates (interplay with mechanics/cooling), digitistaion (inputs from beamtest and electronics)
- Calibration: sensitive units (SiPM, crystal, ASIC) versus temperature, irradiation

32

Particle flow performance: further optimizations

Summary

Overview of CEPC ECAL options and dedicated R&D in past 8 years

Crystal selected as a baseline option for the CEPC reference detector

- Extensive studies on simulation performance and specifications
- Steady progress with prototyping/beamtests, and dedicated PFA developments
- First designs of general design, mechanics, cooling and readout electronics
- More efforts in planning to address critical issues for reference detector TDR
 - Beam-induced backgrounds and data throughput
 - System integration issues with mechanics, cooling and readout electronics
 - Calibration schemes (on-board designs for in-situ): SiPM, crystal, ASIC

Thank you for your attention!

中國科學院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

References

- C. Adloff et al., Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons, Nuclear Instruments and Methods in Physics Research A 608 (2009) 372–383
- K. Francis et al., Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter, Nuclear Instruments and Methods in Physics Research A 763 (2014) 278–289
- CEPC Conceptual Design Report Volume II Physics & Detector, IHEP-CEPC-DR-2018-02
- Crystal calorimeter R&D: contributions at CALOR 2024
 - Development of high-granularity crystal calorimeter
 - <u>SiPM dynamic range studies</u>
 - Particle-flow software and performance of crystal ECAL
 - Stereo Crystal ECAL
- High-granularity crystal calorimeter talk at ICHEP2024

Electronics diagram for ECAL & HCAL

Energy and time measurements: ASIC for ECAL & HCAL

Data transmission: common data platform (refer to the "Electronics TDR Report")

Trigger mode: trigger-less readout in Front-End Electronics (FEE)

R&D efforts and results: dynamic range

SiPM with 10um/15um pixel pitch

Type no	Dark count rate*5 DCR		Direct crosstalk probability	Terminal capacitance at Vop ^{*6}	Gain	Temperature coefficient of Vop
туре по.	typ. (kcps)	max. (kcps)	Pct (%)	Ct (pF)	М	ΔTVop (mV/°C)
S14160-1310PS	120	360		100		
S14160-3010PS	700	2100		530	1.8 × 10 ⁵	
S14160-6010PS NEW	3000	10000	_1	2200		34
S14160-1315PS	120	360		100		57
S14160-3015PS	700	2100		530	3.6 × 10 ⁵	
S14160-6015PS NEW	3000	10000		2200		

SiPM with 25um pixel pitch

Type no.	Measurement conditions	Spectral response range λ	Peak sensitivity wavelength λp	Photon detection efficiency PDE ^{*4} $\lambda = \lambda p$	Dark o	Max.	Terminal capacitance Ct	Gain M	Breakdown voltage VBR	Crosstalk probability	Recommended operating voltage Vop	Temperature coefficient at recommended operating voltage Δ TVop
		(nm)	(nm)	(%)	(kcps)	(kcps)	(pF)		(V)	(%)	(V)	(mV/°C)
S13360-1325PE		320 to 900			70	210	60					
S13360-3025CS		270 to 900			400	1200	220					
S13360-3025PE	Vover	320 to 900		25	400	1200	520	7.0 × 10 ⁵		1	Vbr + 5	54
S13360-6025CS	V	270 to 900			1600	E000	1290					0.
S13360-6025PE		320 to 900			1000	5000	1280					

Dynamic range of a state-of-art chip: ~33000 p.e. for 25um SiPM

State-of-art ASIC dynamic range

07.08.24 Expected to reach ~128k p.e. for SiPM with 10um pixel pitch

Summary: crystal ECAL with long bars

Parameter Name	Barrel Endcaps (x2)		Sum
Inner Radius for ECAL	1900 mm	350 mm	NA
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24X₀</mark> (<i>2168.3mm for BGO</i>)	NA
Longitudinal Depth	24X ₀ (2	NA	
Modularity	 28 modules in phi, 15 rings along Z 28 modules in phi, 15 rings along Z 15 rings along Z 		NA
Material Volume (m ³)	20.2	7.8	28.0
Readout channels	0.92 M	0.36 M	1.3 M
Power dissipation	18.4 kW	7.2 kW	25.6 kW

Data throughput estimate: first simulation results

Crystal bar ECAL data size estimation

• Luminosity (CEPC accelerator TDR, 2023)

$\mathcal{L} = 115 \times 10^{34} \ cm$	$^{-2}s^{-1}$ / IP @ 30 MW
---	----------------------------

• $\mathcal{L} = 192 \times 10^{34} \ cm^{-2} s^{-1}$ / IP @ 50 MW

Physics Process @ Z mode	σ (nb) @ √s = 91.2 <i>GeV</i>	Rate (kHz) @ 30 MW	Rate (kHz) @ 50 MW
$e^+e^- ightarrow q \overline{q}$	30.20	34.7	58.0
$e^+e^- \to \mu^+\mu^-$	1.51	1.73	2.90

*No $ee \rightarrow \tau\tau$ cross section, but should at the same level as $ee \rightarrow \mu\mu$

• Simulation geometry: Octagonal ECAL

- Inner R = 1860 mm, depth 280 mm, Z = 6700 mm.
- In each module: 4*11 blocks, bar length 400~600 mm, bar size ~60k.
- Physical process: $\sqrt{s} = 91$ GeV, Bhabha, $ee \rightarrow Z/\gamma^* \rightarrow \mu \mu / \tau \tau / qq$.

• Digitization:

• Bar energy threshold 0.1 MeV.

Crystal bar ECAL data size estimation

• Fired bar size in each module

Process	Barrel acceptance*	Rate @ 30 MW [kHz]	Rate @ 50 MW [kHz]		
Bhabha	48.7%				
$e^+e^- \to \mu \mu$	-				
$e^+e^- \to \tau\tau \; ^{\star\star}$	82%	1.42	2.38		
$e^+e^- \to q \bar{q}$	99.4%	34.5	57.7		
$e^+e^- \rightarrow q\bar{q}$ ($E_{tot} > 30 \; GeV$)	79.9%	27.7	46.3		
*Definition: deposit >1GeV energy in ECAL					

*Use $\sigma(ee \rightarrow \mu\mu)$ and it's rate.

Crystal bar ECAL data size estimation

• Readout:

- Double-side readout, so 2 channels / bar.
- data size = 32bit / channel.
- Data size for the hottest module (only count $e^+e^-
 ightarrow q ar q$ process):
 - 30 MW: 27.7 [kHz] * 5k [bars] * 2 * 32 [bit] = 8.86 Gbits/s = 1.1 GB/s
 - 50 MW: 46.3 [kHz] * 5k [bars] * 2 * 32 [bit] = 14.8 Gbits/s = 1.9 GB/s

Plan to update estimates with the latest ECAL geometry implemented

Beam-induced backgrounds: simulation studies

Background	Rate/Hz	N _{MCParticle} / 3.6 μ <i>s</i> time window
Pair production		~ 7800
Beam-Gas Bremsstrahlung (BGB)	83,280.65	~ 0.30
Beam-Gas Coulomb (BGC)	884,002.12	~ 3.18
Beam Thermal Photon Scattering (BTH)	623,520.09	~ 2.24
Synchrotron Radiation		
Radiative Bhabha		
Touschek		

Higgs mode:

- pair production: double beams, e+-
- BG: single beam
- Using 4 types of beam backgrounds.
- Simulation Time Window: 3.6 us (6 collisions and 6 bunch spacing)
 - Considering physics events and beam background events.
 - Taking into account the scintillation decay time of the crystal and the shaping time of the electronics.

Beam-induced backgrounds: time structures

single crystal bar

Mechanics: FEA studies on deformation

CERN setup: energy resolution

Planning

- R&D planning to address critical issues: beyond 2024
 - Radiation damages in SiPM and crystal: mitigation solutions

Fig. 21. Normalized LO as a function of integrated dose for various crystals.

1.Geometry design of ECAL barrel 2.Geometry and material description of ECAL barrel

- Design of 32-side crystal ECAL geometry.
 - Invert trapezoid module with minimized crack angle: reduce energy leakage.
 - Correspondence of layers between adjacent modules: clear shower structure.
- A realistic crystal ECAL geometry has been implemented with DD4HEP and released at CEPCSW MR <u>19</u>.
- Summary of all crystal ECAL parameters.

Fine geometry and material description.

07.08

Parameter		Value / mm
Inner radius		1900
Outer radius		2200
Length		5900
Crystal length		~ 400
# Modules in $r - \phi$		32
# Modules in Z		15
ϕ Projectivity tilt		12°
# Layers		28
Parameter / mm	Anti-Trapezoidal	Trapezoid
Bottom length	314.598	435.106
Top length	492.657	369.809
Iodule height	280.232	292.216
ayer height	9.651	10.079
Crystal height	9.451	9.879
Radiation length	23.628 X_0	24.698 X

1900 mn

- 2200 mn

2000

Digitization and single photons energy resolution

• Digitization: energy deposition \rightarrow digits in ADC, considering crystal scintillation and electronic design.

Geometry of Crystal ECAL endcap

- 1st version: preliminary design
- Consist of several same modules, right plot shows single module.
- Dead material (carbon fiber, electronics and so on) is similar v barrel.

Parameter	Value
Inner radius	350 mm
Outer radius	2200 mm
Z start	2930 mm
Z depth	300mm (24 X ₀ 268.8 mm)

Overall Structure

