Contribution ID: 3 Type: not specified

No-Core MCSM calculation for $^{10}\mathrm{Be}$ and $^{12}\mathrm{Be}$ low-lying spectra

Thursday, 3 November 2011 16:00 (30 minutes)

The low-lying excited states of 10 Be and 12 Be are investigated within a no-core Monte Carlo Shell Model (MCSM) framework employing a realistic potential obtained via the Unitary Correlation Operator Method. The excitation energies of the 2_1^+ and 2_2^+ states and the B(E2; $2_1^+ \to 0_{g.s.}^+$) for 10 Be in the MCSM with a treatment of spurious center-of-mass motion show good agreement with experimental data. The deformation properties of the 2_1^+ , 2_2^+ states for 10 Be and of the 2_1^+ state for 12 Be are studied in terms of quadrupole moments, E2 transitions and the single-particle occupations. The E2 transition probability of 10 C, the mirror nucleus of 10 Be, is also presented. The triaxial deformation of 10 Be is tested by the B(E2; $2_2^+ \to 2_1^+$) value. The removal of the spurious center-of-mass motion shifts the 1_1^- level significantly, improving agreement with experiment.

Primary author: Dr LIU, Lang (Peking University)

Co-authors: Prof. ROTH, Robert (Institut f\"{u}r Kernphysik, Technische Universit\"{a}t Darmstadt); Prof. NORITAKA, Shimizu (Tokyo University); Prof. OTSUKA, Takaharu (Tokyo University); Prof. UTSUNO, Yutaka (Japan Atomic Energy Agency)

Presenter: Dr LIU, Lang (Peking University)