Strong interaction origin of hadron mass

Yi-Bo Yang

For CLQCD collaboration

Hadron mass

and its origin

Higgs boson provides very different coupling to six quark flavors;

Quarks (and gluons) combine to form hundreds of hadrons with varying masses;

• What would be the origin of the mass gap between different hadrons?

Hadron mass $m_H = \langle T^{\mu}_{\mu} \rangle_{H,\vec{p}=0}$ $T_{\mu\nu} = \sum \frac{i}{2} \bar{q} \overleftrightarrow{D}_{(\mu} \gamma_{\nu)} q + \frac{1}{4} g_{\mu\nu} F^2 - F_{\mu\rho} F_{\rho\nu}$ At quantum level

When D = 4, the UV regularization will introduce an UV scale and break the conformal symmetry, and change T^{μ}_{μ} into:

$$T^{\mu}_{\mu} = \left[1 + \frac{2}{\pi}\alpha_s + \mathcal{O}(\alpha_s^2)\right]m\bar{\psi}\psi + \left[\left(-\frac{11}{8\pi} + \frac{N_f}{12\pi}\right)\alpha_s + where the terms proportional to \alpha_s a quantum equation to a qua$$

• On the lattice, the exact form of $T_{\mu\nu}$ is unknown, while we can guess how the trace anomaly works:

$$\frac{2}{a^4g^2} \operatorname{Tr}[1 - U_{P,\mu\nu}^{m \times n}] = m^2 n^2 F_{\mu\nu}^2 + \mathcal{O}(a^2, \alpha_s/a^4)$$

$$\frac{2}{a^4 g^2} \operatorname{Tr}[U_{P,\mu\nu}^{1\times 1} - \frac{1}{16} U_{P,\mu\nu}^{2\times 2}] = \mathcal{O}(a^2, \alpha_s/a^4)$$

 $\mathcal{O}(\alpha_s^2) F^2$, are the QCD corrections.

• Under the dimension regularization, we have $T^{\mu}_{\mu} = m\bar{\psi}\psi - 2\epsilon \frac{F^2_{\mu\nu}}{4} + \mathcal{O}(\epsilon^2), \text{ and }$ $F_{\mu\nu}^{2} = -\frac{1}{\epsilon} \left(\frac{\beta}{\varrho} F_{\mu\nu,R}^{2} + 2\gamma_{m} m \bar{\psi} \psi \right) + \mathcal{O}(\epsilon^{0});$ See Y. Hatta, et.al., JHEP12(2018)008 as an example

$$\mathscr{L}_{\text{QCD}}^{\text{lat}} = \sum_{q=u,d,s,c,b,t} \bar{q}^{i} (\mathcal{D}_{ij}^{\text{lat}} - \delta_{ij} m_{q}) q^{j} + \frac{1}{2N_{c}g^{2}a^{4}} \sum_{\mu\nu} \text{Tr}[1 - \frac{1}{2N_{c}g^{2}a^{4}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}a^{4}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}} \sum_{\mu\nu} \frac{1}{1-2N_{c}g^{2}}$$

Hadron mass

- The gluon contribution to the hadron 0 mass, form factor and mass radius;
- **Overlap fermion at 0.11 fm, too** expensive to control the systematics.

Gluon trace anomaly contribution

Z.-H. Hu, B.-L. Hu, J.-H. Wang, et. al., CLQCD, PRD109(2024) 054507

CLQCD ensembles

in the future 0.11 fm; 350 MeV; A University of Chinese Academy of Sciences a 0.15 fm

14 ensembles with more than 5,000 configurations in total:

- 5 lattice spacings from 0.05 fm to
- 7 pion masses from 130 MeV to
- 4 Volumes from 2.5 fm to 5.0fm.
- More ensembles are in production;

Ensembles with another setup are preparing for better control on systematic uncertainties.

Finite volume

- Based on our simulation with 0 different spacial size at a = 0.055 fm:
- Spontaneous chiral symmetry breaking restored at $L \sim 0.8$ fm which corresponds to $1/L \sim 246 \text{ MeV};$
- But the mass gap $m_N 3/2m_\pi$ remain large even at very small L.
- It suggests that mass gap and spontaneous chiral symmetry breaking can be independent features of QCD.

SU(N)

- Based on our pure gauge simulation with different $N_c = 2,3,4,5,6,8$:
- The plaquatte $\frac{1}{N_c} \text{Tr}[U_{P,\mu\nu}^{1\times 1}]$ have similar behavior as a function of $N_c g^2$ but not g^2 ;
- The plaquatte saturates at $N_c \sim 8$ and can be described by analytic behavior at weak/strong coupling limits.
- Studies of the other quantities, dynamical flavors, dimensions are in progress.

roadmap

Quark mass

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

- $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$
- $m_n = 939.57$ MeV;
- $m_{\pi}^0 = 134.98$ MeV;
- $m_{\pi}^{+} = 139.57 \text{ MeV} = m_{\pi}^{0} + 4.53(6) \text{ MeV} + \dots;$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003
- $m_K^0 = 497.61(1) \text{ MeV} = m_{K.OCD}^0 + 0.17(02) \text{ MeV} + \dots;$
- $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^+ + 2.24(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

Light and strange quark masses

Renormalized quark masses

D.J. Zhao, et. al., χ QCD, in preparation

Charm quark mass

Based on the $a^2 + a^4$ extrapolation:

- The impact of unphysical light and strange quark masses have been corrected based on the global fit.
- Such a value is similar to the current lattice averages within $\sim 2\%$.

Charmed meson spectrum

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

Open charm cases

- m_D is almost constant at different lattice spacing, with $m_D^{\pm} - m_D^0 = 2.9(2)_{\rm QCD} + 2.4(5)_{\rm QED} = 5.3(2)(5)$ MeV; RM123, Phys.Rev.D95(2017) 114504
- Agree with the PDG value 4.8(1) MeV well.
- Both m_D^* and $m_{D_s}^*$ have obvious lattice spacing dependence and the continuum extrapolated values agree with PDG well.

Charmed meson spectrum

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass

charmonium cases

- $m_{J/\psi}$ agrees with PDG well but $m_{\eta_{a}}$ is a few MeV lower;
- $m_{J/\psi} m_{\eta_c} = 116(3)$ MeV agree with previous HPQCD pure QCD prediction 119(1) MeV.
- P-wave charmonium masses also agree with PDG well, with $m_{1P} - m_{1S} = 461(19)$ MeV.

Strong interaction origin of hadron mass

Symbol	$\tilde{L}^3 imes \tilde{T}$	\hat{eta}	$a~({ m fm})$	$ ilde{m}^{ m b}_l$	$ ilde{m}^{ m b}_s$	$m_{\pi}({ m MeV})$	$m_{\eta_s}({ m MeV})$	m_{π}
C24P34	$24^3 \times 64$	6.20	0.10521(11)(62)	-0.2770	-0.2310	340.2(1.7)	748.61(75)	4.3
C24P29	$24^3 \times 72$	6.20	0.10521(11)(62)	-0.2770	-0.2400	292.3(1.0)	657.83(64)	3.7
C32P29	$32^3 \times 64$			-0.2770	-0.2400	293.1(0.8)	658.80(43)	5.0
C32P23	$32^3 \times 64$			-0.2790	-0.2400	227.9(1.2)	643.93(45)	3.9
C48P23	$48^3 \times 96$			-0.2790	-0.2400	224.1(1.2)	644.08(62)	5.7
C48P14	$48^3 \times 96$			-0.2825	-0.2310	136.4(1.7)	706.55(39)	3.5
E28P35	$28^3 \times 64$	6.308	0.08970(26)(53)	-0.2490	-0.2170	351.4(1.4)	717.94(93)	4.4
F32P30	$32^3 \times 96$	6.41	0.07751(14)(45)	-0.2295	-0.2050	300.4(1.2)	675.98(97)	3.8
F48P30	$48^3 \times 96$			-0.2295	-0.2050	302.7(0.9)	674.76(58)	5.7
F32P21	$32^3 \times 64$			-0.2320	-0.2050	210.3(2.3)	658.79(94)	2.6
F48P21	$48^3 \times 96$			-0.2320	-0.2050	207.5(1.1)	661.94(64)	3.9
F64P14	$ 64^3 \times 128 $			-0.2336	-0.2030	122.8(0.9)	679.9(0.3)	3.0
G36P29	$36^{3} \times 108$	6.498	0.06884(18)(41)	-0.2150	-0.1926	297.2(0.9)	693.05(46)	3.6
H48P32	$48^3 \times 144$	6.72	0.05198(20)(31)	-0.1850	-0.1700	316.6(1.0)	691.88(65)	4.0

- Used 2,636 configurations with 27,158 measurements in total;
- After the continuum extrapolation, agree with the previous lattice results well.

Proton case

- Generally agree with the PDG values at 1% level;
- Decay width is added to the experimental values as an uncertainty of the pole position;
- The mass of baryon with 1 charm quark is around 2.5 GeV;
- The mass of baryon with 2 charm quarks is around 3.8 GeV;
- The mass of baryon with 3 charm quarks is around 5 GeV;
- The missing QED effect will be investigated in the near future.

of four light flavors

• After interpolation of valence strange and charm quark masses, the hadron mass on different ensembles are fitted using the following ansatz: $X(m_{\pi}, m_{\eta_s}, a) = X(m_{\pi}^{\text{phys}}, m_{\eta_s}^{\text{phys}}, 0)$

$$+d_1^X(m_\pi^2 - (m_\pi^{\text{phys}})^2) + d_2^X(m_{\eta_s,\text{sea}}^2 - (m_{\eta_s}^{\text{phys}})^2) + d_3^Xa^2 + d_4^Xa^4;$$

The light quark mass contribution is defined as

$$\sigma_{\pi X} = d_1^X (m_\pi^{\text{phys}})^2;$$

- That in $N^{1/2}$ or $\Delta^{3/2}$ is ~40 MeV;
- Those in the baryons with two valence light quarks are ~25 MeV;
- Those in the baryons with only one valence light quark are ~15 MeV;
- Contribution to the baryons without valence light quark decreases with more charm valence quarks.

Light quark mass contribution

- After interpolation of valence strange and charm quark masses, the hadron mass on different ensembles are fitted using the following $X(m_{\pi}, m_{\eta_s}, a) = X(m_{\pi}^{\text{phys}}, m_{\eta_s}^{\text{phys}}, 0)$ ansatz: $+d_1^X(m_\pi^2 - (m_\pi^{\text{phys}})^2) + d_2^X(m_{n_s,\text{sea}}^2 - (m_{n_s}^{\text{phys}})^2) + d_3^Xa^2 + d_4^Xa^4;$
- The strange quark mass contribution is defined as

$$\sigma_{sX} = m_s^{\text{PC}} \frac{\partial m_H}{\partial m_s^{\text{PC}}} \bigg|_{m_{\eta_s}(m_s^{\text{PC}}) = m_{\eta_s}^{\text{phys}}} + d_2^X(m_{\eta_s}^{\text{phys}})^2;$$

- That in $\Omega^{3/2}$ is ~450 MeV;
- Those in the baryons with two valence strange quarks are ~300 MeV;
- Those in the baryons with only one valence strange quark are ~150 MeV;
- Contribution to the baryons without valence strange quark are relatively small.

Strange quark mass contribution

• After interpolation of valence strange and charm quark masses, the hadron mass on different ensembles are fitted using the following ansatz: $X(m_{\pi}, m_{\eta_{s}}, a) = X(m_{\pi}^{\text{phys}}, m_{\eta_{s}}^{\text{phys}}, 0)$

$$+d_1^X(m_\pi^2 - (m_\pi^{\text{phys}})^2) + d_2^X(m_{\eta_s,\text{sea}}^2 - (m_{\eta_s}^{\text{phys}})^2) + d_3^Xa^2 + d_4^Xa^4;$$

The strange quark mass contribution is defined as

$$\sigma_{cX} = m_c^{\text{PC}} \frac{\partial m_H}{\partial m_c^{\text{PC}}} \bigg|_{m_{\eta_s}(m_s^{\text{PC}}) = m_{\eta_s}^{\text{phys}}, m_{D_s}(m_{s,c}^{\text{PC}}) = m_{D_s}^{\text{phys}}}$$

- That in $\Omega_{ccc}^{3/2}$ is ~3 GeV;
- Those in the baryons with two valence charm quarks are ~2.1 GeV;
- Those in the baryons with only one valence charm quark are ~1.1 GeV;
- Contribution to the baryons without valence charm quark are neglected (would be ~70 MeV based on the heavy quark expansion).

Charm quark mass contribution

Trace anomaly contribution

 $(\alpha_s^2)]\langle F^2\rangle_H.$

- Total trace anomaly can be obtained through the difference between baryon mass and its quark mass contributions;
- Gluon trace anomaly $\langle H_a^g \rangle_H = \langle H_a \rangle_H \gamma_m \sigma_H$ can be more insensitive to flavor if we use $\gamma_m \sim 0.3$;
- That in the J=3/2 baryon is larger than that of J=1/2 baryon, while the difference becomes smaller with more heavy flavors.

Summary

- Kinds of gauge ensembles in different conditions have been generated to study the mass gap and related feature of the Yang-Mills field;
- Up, down, strange and charm quark masses have been determined at a few percent level, and bottom quark mass is under investigation;
- Ground state baryon masses with the lightest four flavors and contributions from Higgs and strong interaction are obtained, and the latter one is universal within 10%.

GeV)

 M_{H}

1.0

 $\Sigma_c^{\,*}$

 Ξ_c^*

