

Inclusive charm decays

Qin Qin

Huazhong University of Science and Technology

2412.XXXXX, collaborating with D.H.Li, K.K.Shao, F.S.Yu, ...

第四届量子场论及其应用研讨会 广州,2024年11月16-20日

Semi-inclusive charm decays

Experimental detection of partial final state particles $\Rightarrow D \rightarrow e^+ X (D \rightarrow e^+ \nu_{\rho} X)$, only e^+ is detected) Sum of a group of exclusive channels $\Rightarrow D^0 \to e^+ X_c = D \to e^+ \nu_{\rho} K^-, e^+ \nu_{\rho} K^- \pi^0, e^+ \nu_{\rho} \bar{K}^0 \pi^-, \dots$ $\Rightarrow D^0 \rightarrow e^+ X_d = D \rightarrow e^+ \nu_{\rho} \pi^-, e^+ \nu_{\rho} \pi^- \pi^0, e^+ \nu_{\rho} \pi^- \pi^+ \pi^-, \dots$

- As weak decays of heavy hadrons
 - Probe new physics
 - Understand QCD
- Compared to exclusive decays
 - Better theoretical control
- Compared to beauty decays
 - Special to new dynamics attached with up-type quarks
 - More sensitive to power corrections

 \star Determination by charm, application in beauty.

- Resolve (or at least give hints to) current flavor puzzles/anomalies
 - Puzzles in charmed hadron lifetimes: theory vs experiment
 - \blacktriangleright V_{cb} , V_{ub} puzzles: inclusive vs exclusive
 - $\Rightarrow b \rightarrow s$ anomalies: P'_5 in $B \rightarrow K^* \ell \ell$

• Flavor puzzle 1. Charmed hadron lifetimes: theory vs experiment

- large/unknown uncertainties
 - Dependence on identical hadronic parameters in HQET, $\langle H_c | O_i | H_c \rangle$
- **Solution**: Extraction in the inclusive decay spectrum and application to lifetime

meson decays – as it was done for the B^+ and B^0 decays – would be very desirable.

 $\mathcal{O}(1/m_c^3) \Rightarrow \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0),$ $\mathcal{O}(1/m_c^4) \Rightarrow \tau(\Omega_c^0) > \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0),$ $\mathcal{O}(1/m_c^4)$ with $\alpha \Rightarrow \tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0).$

[Cheng, '21]

Again a more precise experimental determination of μ_{π}^2 from fits to semileptonic D^+ , D^0 and D_s^+ [Lenz et al, '22]

- Flavor puzzle 2. V_{cb} , V_{ub} : inclusive vs exclusive
- **Key issue:** Systematic uncertainties from theoretical inclusive and exclusive frameworks
- Give hints:
 - Test V_{cd} , V_{cs} : inclusive vs exclusive

- Flavor puzzle 3. $b \to s$ anomalies: P'_5 in $B \to K^* \ell \ell$
- **Key issue:** $B \rightarrow K^*$ form factor receive large longdistance quark loop contributions, whose firstprinciple calculation is still missing
- Give hints:
 - Test the $c \to u$ transition, by angular distribution in inclusive $D \to X_u \ell \ell$

Theoretical framework

• Optical theorem

$\sum \langle D | H | X \rangle \langle X | H | D \rangle \propto \operatorname{Im} \int d^4 x \langle D | T \{ H(x) H(0) \} | D \rangle$

- Operator product expansion (OPE)
 - Short distance $x \sim 1/m_c$
 - \blacksquare Dynamical fluctuation in D meson $~\sim \Lambda_{\rm QCD}$

$$T\{H(x)H(0)\} = \sum_{n} C_n(x)C_$$

Systematic OPE in HQET.

Theoretical framework

Heavy quark effective theory

$$L \ni \bar{h}_{v} iv \cdot Dh_{v}$$
$$-\bar{h}_{v} \frac{D_{\perp}^{2}}{2m_{c}} h_{v} -$$

Similar to –

$$\frac{v}{-c(x)}$$
 $v = (1,0,0,0)$

Subtract the big intrinsic momentum, Leave only ~ Λ_{QCD} degrees of freedom.

$$a(\mu)g\bar{h}_{v}\frac{\sigma\cdot G}{4m_{c}}h_{v}+\dots$$

$$\frac{m}{\sqrt{1-v^{2}}}=m+\frac{1}{2}mv^{2}+\dots$$

Theoretical framework

- OPE \bullet $T\{H(x)H(0)\} =$
 - ⇒ Dim-3: $h_{\nu}h_{\nu}$ ($\bar{c}\gamma^{\mu}c$) → partonic decay rate. \Rightarrow Dim-5: $\bar{h}_v D^2_1 h_v$, $g \bar{h}_v \sigma \cdot G h_v$. $\Rightarrow \text{Dim-6: } \bar{h}_v D_\mu (v \cdot D) D^\mu h_v, (\bar{h}_v \Gamma_1 q) (\bar{q} \Gamma_2 h_v), \dots$
- Contribute to inclusive decay rate and also lifetime
 - Matrix elements of the same opera
 - Only different short-distance coeffi

$$\sum C_n(x)O_n(0)$$

n

ators
$$\lambda_1 \equiv \frac{1}{4m_D} \langle D \,| \, \bar{h}_v (iD)^2 h_v \,| \, D \rangle = -\mu_\pi^2$$

icients
$$\lambda_2 \equiv \frac{1}{16(s_c \cdot s_q)} \frac{1}{2m_D} \langle D \,| \, \bar{h}_v g \sigma \cdot G h_v \,| \, D \rangle = \frac{\mu_\pi^2}{16(s_c \cdot s_q)} \frac{1}{2m_D} \langle D \,| \, \bar{h}_v g \sigma \cdot G h_v \,| \, D \rangle = \frac{\mu_\pi^2}{16(s_c \cdot s_q)} \frac{1}{2m_D} \langle D \,| \, \bar{h}_v g \sigma \cdot G h_v \,| \, D \rangle = \frac{\mu_\pi^2}{16(s_c \cdot s_q)} \frac{1}{2m_D} \langle D \,| \, \bar{h}_v g \sigma \cdot G h_v \,| \, D \rangle$$

Theoretical results

• Analytical differential decay rate

$$\begin{aligned} \frac{1}{\Gamma_0} \frac{d\Gamma}{dy} &= 2(3 - 2y)y^2 \theta(1 - y) \\ &+ \frac{2\mu_\pi^2}{m_c^2} \Big[-\frac{5}{3} y^3 \theta(1 - y) + \frac{1}{6} \delta(1 - y) + \frac{1}{6} \delta'(1 - y) \Big] \qquad \qquad y \equiv 2E_e/m_c \\ &- \frac{2\mu_G^2}{3m_c^2} \Big[-y^2(6 + 5y)\theta(1 - y) + \frac{11}{2} \delta(1 - y) \Big] + \mathcal{O}(\alpha_s, \frac{\Lambda^3}{m_c^3}) \end{aligned}$$

Observables require integration over final states

$$\Gamma = \int \frac{d\Gamma}{dy} dy, \langle E_{\ell} \rangle = \frac{1}{\Gamma} \int \frac{d\Gamma}{dy} E_{\ell} dy, \langle E_{\ell}^2 \rangle = \frac{1}{\Gamma} \int \frac{d\Gamma}{dy} E_{\ell}^2 dy, \dots$$

• Up to finite power, the obtained differential decay rate is **NOT** the experimental spectrum

Theoretical results

• Analytical results for total decay rate and energy moments

$$\begin{split} \Gamma &= \frac{G_F^2 m_c^5 |V_{cq}|^2}{192\pi^3} \Big[1 + \frac{\alpha_s C_F}{2\pi} (\frac{25}{4} - \pi^2) - \frac{\mu_\pi^2}{2m_c^2} - \frac{3\mu_G^2}{2m_c^2} \Big] \\ \langle E_e \rangle &= \frac{G_F^2 m_c^6 |V_{cq}|^2}{192\pi^3 \Gamma} \Big[\frac{7}{20} + \frac{\alpha_s C_F}{2\pi} (\frac{638}{300} - \frac{105\pi^2}{300}) - \frac{\mu_G^2}{m_c^2} \Big] \\ \langle E_e^2 \rangle &= \frac{G_F^2 m_c^6 |V_{cq}|^2}{192\pi^3 \Gamma} \Big[\frac{2}{15} + \frac{\alpha_s C_F}{2\pi} (\frac{59}{75} - \frac{10\pi^2}{75}) + \frac{\mu_\pi^2}{9m_c^2} - \frac{26\mu_G^2}{45m_c^2} \Big] \end{split}$$

• Fit them to data

CLEO measurements

 $D^0 \to e^+ X$ $D^+ \to e^+ X$ $D_s^+ \to e^+ X$

BESIII measurements

- [CLEO, '09]

BESIII measurements

 $[BESIII (567 \text{ pb}^{-1}), '18]$

 $\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (4.06 \pm 0.10_{\text{stat.}} \pm 0.09_{\text{syst}})\%$

 $[BESIII (4.5 fb^{-1}), '23]$

$$\begin{split} \langle E_e \rangle_{lab}^{D^0} &= 0.465(3) \text{GeV}, \qquad \langle E_e^2 \rangle_{lab}^{D^0} \\ \langle E_e \rangle_{lab}^{D^+} &= 0.459(1) \text{GeV}, \qquad \langle E_e^2 \rangle_{lab}^{D^+} \\ \langle E_e \rangle_{lab}^{D_s} &= 0.466(12) \text{GeV}, \qquad \langle E_e^2 \rangle_{lab}^{D_s} \end{split}$$

Lab frame

 $= 0.248(2) \text{GeV}^2$, $= 0.242(1) \text{GeV}^2$, $= 0.254(13) \text{GeV}^2$.

 $\langle E_\ell \rangle_{exp}^{D_s} = 0.456(11) \text{GeV} \,,$ $\langle E_{\ell}^2 \rangle_{exp}^{D^0} = 0.240(2) \text{GeV}^2$, $\langle E_{\ell}^2 \rangle_{exp}^{D^+} = 0.236(1) \text{GeV}^2$, $\langle E_{\ell}^2 \rangle_{exp}^{D_s} = 0.239(12) \text{GeV}^2$,

Rest frame

[Gambino,Kamenik,

Global fit (preliminary)

$\mu_{\pi}^2(D) = (0.48 \pm 0.20) \text{GeV}^2$ $\mu_G^2(D) = (0.34 \pm 0.10) \text{GeV}^2$

[Lenz et al, '22]

 $\mu_{\pi}^2(D) = (0.124 \pm 0.014) \text{GeV}^2$ $\mu_G^2(D) = (0.115 \pm 0.038) \text{GeV}^2$

[Our results]

To improve

- Modifications from higher power corrections
- Direct experimental measurements of moments

Include higher-order radiative corrections

Include dimension-6 operator contributions

• Extract more hadronic parameters (and the charm mass)

Further Plans

• Precision measurements of $\langle E_e^n \rangle$ in the rest frame of charmed hadrons

• q^2 spectrum, good for higher-dimensional operators

• Separate X_d , X_s , to give first inclusive measurements of V_{cd} , V_{cs}

• Rare decays: $D \to X_{\mu} \ell \ell$. STCF?

Wishlist

Backup

Global fit (preliminary)

Pole mass scheme: mc=1.48 GeV

MS bar mass scheme:

$$m_c^{Pole} = \bar{m}_c \left(\bar{m}_c \right) \left[1 + \frac{4}{3} \frac{\alpha_s(\bar{m}_c)}{\pi} \right]$$
$$\bar{m}_c \left(\bar{m}_c \right) = 1.27 \text{GeV}$$

Kinetic mass scheme:

$$m_c^{Pole} = m_c^{Kin} \left[1 + \frac{4\alpha_s}{3\pi} \left(\frac{4}{3} \frac{\mu^{\text{cut}}}{m_c^{Kin}} + \frac{1}{2} \left(\frac{\mu^{\text{cut}}}{m_c^{Kin}} \right)^2 \right) \right]$$
$$m_c^{kin}(0.5\text{GeV}) = 1.363\text{GeV}$$

1S mass scheme:

$$m_c^{Pole} = m_c^{1S} \left(1 + \frac{\left(C_F \alpha_s \right)^2}{8} \right)$$
$$m_c^{1S} \approx 1.44 \text{GeV}$$

20

CLEO measurements

 $D^0 \rightarrow e^+ X$

 $D^+ \rightarrow e^+ X$

 $3.0 \times 10^6 D^0 \overline{D}^0$ and $2.4 \times 10^6 D^+ D^-$ pairs, and is used to ays. The latter data set contains $0.6 \times 10^6 D_s^{*\pm} D_s^{\mp}$ pairs, [CLEO (818pb⁻¹($D^{0,\pm}$), 602pb⁻¹(D_s^{\pm})), '09]

BESIII measurements

1800

1600

()1400 1200 1000 800 600 400 200 0 200 0 200 0 200 0 200 0 200		
p (IVIeV/C)		
$E_{\rm cm}~({\rm MeV})$	$\int \mathcal{L} dt \; (\mathrm{pb}^{-1})$	$N_{D_s}(\times 1)$
4178	$3189.0 \pm 0.9 \pm 31.9$	6.4
4189	$526.7 \pm 0.1 \pm 2.2$	1.0
4199	$526.0 \pm 0.1 \pm 2.1$	1.0
4209	$517.1 \pm 0.1 \pm 1.8$	0.9
4219	$514.6 \pm 0.1 \pm 1.8$	0.8

4225 - 4230 [32] $1047.3 \pm 0.1 \pm 10.2$ [33]

 $D_s^+ \to e^+ X$

[BESIII, '21]

1.3

21

