Universality in the Near Side EEC

Xiaohui Liu Beijing Normal University

Nov 18, 2024 @ Guang Zhou

Energy Correlators

• $\chi \rightarrow \frac{\pi}{2}$, fixed order • $\chi \to \pi$, TMD soft, ~ $e^{a \ln^2 \frac{1}{\chi}} e^{-2S_{NP}}$ • $\Lambda_{QCD} \ll Q\chi \ll Q$, Collinear, $\sim \theta^{-1+\gamma[3]}$ • $Q\chi \lesssim \Lambda_{QCD}$, phase transition, ?

Energy Correlators

$$\langle \mathcal{E}(\vec{n}_1')\mathcal{E}(\vec{n}_2')\rangle = (\frac{q^0}{4\pi})^2 \left[1 + \frac{6\pi^2}{\lambda}(\cos^2\theta_{12} - \frac{1}{3}) + \cdots\right]$$

Hofman, Maldacena, 2008

• $\chi \rightarrow \frac{\pi}{2}$, fixed order • $\chi \to \pi$, TMD soft, ~ $e^{a \ln^2 \frac{1}{\chi}} e^{-2S_{NP}}$ • $\Lambda_{QCD} \ll Q\chi \ll Q$, Collinear, $\sim \theta^{-1+\gamma[3]}$ • $Q\chi \lesssim \Lambda_{QCD}$, phase transition, ?

Non-Perturbative Aspects XL, Vogelsang, Yuan, Zhu, 2410.16371

• Uncorrelated distribution in the deep NP regime, $d\Sigma/d\cos\theta \sim \text{const.}$ $O \chi \rightarrow 0$ peaks almost position at the same $Q \chi \rightarrow$ probing the same NP scale Λ_{OCD} $O_{\chi} \rightarrow 0$ peaks rise more dramatically \leftarrow collinear vs pert. Sudakov

Non-Perturbative Aspects Seen in the LHC data XL, Vogelsang, Yuan, Zhu, 2410.16371

• Uncorrelated distribution in the deep NP regime, $d\Sigma/d\cos\theta \sim \text{const.}$ $O \chi \rightarrow 0$ peaks almost position at the same $Q \chi \rightarrow$ probing the same NP scale Λ_{OCD} $\circ \chi \rightarrow 0$ peaks rise more dramatically \leftarrow collinear vs pert. Sudakov

Non-Perturbative Aspects XL, Vogelsang, Yuan, Zhu, 2410.16371

• Universal behavior in the near side region \rightarrow probing the same NP physics

Non-Perturbative Aspects

 $p_t = -\sum_X p_{X,t}$

- **O** TMD Fragmentation function is an (semi)-inclusive object
- O EEC needs to now 2 hadrons, likely to be modeled by a di-hadron fragmentation, less known...

 $p_t = -\sum_X p_{X,t}$

- **O** TMD Fragmentation function is an (semi)-inclusive object, encoding info. on the NP transverse dynamics O EEC needs to now 2 hadrons, likely to be modeled by a
 - di-hadron fragmentation, less known...

XL and Zhu, 2403.08874

- Pick an arbitrary hadron h with momentum fraction *z*
- **O** Model all transverse kinematics w.r.t h, with some soft quanta
- **O** The transverse momentum of an arbitrary collinear line follows the transverse momentum distribution of the soft quanta
- Assuming the soft quanta are emitted identically and uncorrelatedly

- Pick an arbitrary hadron h with momentum fraction *z*
- **O** Model all transverse kinematics w.r.t h, with some soft quanta
- The transverse momentum of Ο an arbitrary collinear line follows the transverse momentum distribution of the soft quanta
- **O** Assuming the soft quanta are emitted identically and uncorrelatedly

a lonely boat drifting on a soft river

- Pick an arbitrary hadron h with momentum fraction *z*
- **O** Model all transverse kinematics w.r.t h, with some soft quanta
- The transverse momentum of Ο an arbitrary collinear line follows the transverse momentum distribution of the soft quanta
- **O** Assuming the soft quanta are emitted identically and uncorrelatedly

a lonely boat drifting on a soft river

$$\frac{1}{\sigma} \frac{d^3 \sigma}{dz d^2 \mathbf{p}_t} = d_h(z) \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{-i\mathbf{b} \cdot \mathbf{p}_t}$$

$$\times \sum_{n=1}^{\infty} \frac{1}{n!} \left(\int [dk_i] M_{NP}(k_i) \left(e^{i\mathbf{k}_{i,t} \cdot \mathbf{b}} - 1 \right) \right)$$

$$= d_h(z) \int \frac{db}{2\pi} b J_0(bp_t) e^{-S_{NP}(b,\mu)}$$

 $p_t \approx c E_J \chi$ Purely NP no PT-Sudakov

$$EEC(\chi) = E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S}$$

$$= E_J^2 c^3 N \chi \int db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2}b^2} e^{-\frac{g_2}{2}\ln b}$$

with
$$S_{NP} = \frac{g_1}{z^2}b^2 + \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\frac{\mu}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int$

 $c, N, g_1, g_2, \mu_0, b_*, 6$ parameters!!

 $S_{NP}(b,\mu)$

 $\frac{b}{b*} \ln \frac{RE_J}{\mu_0}$

 $\int dz \sum_{h} z d_h(z) e^{-\frac{g_1}{z^2}b^2}$

$$EEC(\chi) = E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S}$$

$$= E_J^2 c^3 N \chi \int db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2}b^2} e^{-\frac{g_2}{2}\ln b}$$

with
$$S_{NP} = \frac{g_1}{z^2} b^2 + \frac{g_2}{2} \ln\left(\frac{b}{b_*}\right) \ln\frac{\mu}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int$

c, *N*, g_1, g_2, μ_0, b_* , 6 parameters!! Too many!!

 $S_{NP}(b,\mu)$ $\ln \frac{b}{b*} \ln \frac{RE_J}{\mu_0}$ $dz \sum z d_h(z) e^{-\frac{g_1}{z^2}b^2}$ y -100 100 -50 0 50

XL, Vogelsang, Yuan, Zhu, 2410.16371

$$EEC(\chi) = E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S}$$
$$= E_J^2 c^3 N \chi \int db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2} b^2} e^{-\frac{g_2}{2} \ln s}$$

with
$$S_{NP} = \frac{g_1}{z^2}b^2 + \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\frac{\mu}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int$

 $c, N, g_1, g_2, \mu_0, b_*, 6$ parameters!! Too many!! 4 parameters have already been determined, by SIDIS. Only 2 free parameters left, overall normalization and position, can be soley determined by picking just one energy input

Sun, Isaacson, Yuan, and Yuan, 2018

15

EEC from **quark** Jet

 $c \approx 0.35$

- determine c, N using $Q = 300 \,\text{GeV}$ curve, others are obtained by varying $E_I = Q/2$
- Correct Q scaling, Good agreement between model and Pythia/data in the transition region, turning point driven by NP physics
- Larger χ region requires matching with pQCD calculations

A TMD Model in the Small χ Regime EEC from **gluon** Jet

 $c \approx 0.35$

— Q = 1000 GeV — Q = 5000 GeV 500

- Everything is fixed, simply replace $\frac{g_2}{2}\ln\frac{b}{b_*}\ln\frac{RE_J}{\mu_0} \to g_2\frac{C_A}{C_F}\ln\frac{b}{b_*}\ln\frac{RE_J}{\mu_0}$
- Correct Q scaling, Good agreement between model and Pythia, turning point driven by NP physics
- Larger χ region requires matching with pQCD calculations

- **O** ALICE used different normalization.
- Re-determine *N*, but fix other para.
- Gluon and quark jet fraction unknown in their measurements
- Correct Q scaling, good agreement with ALICE

o Go beyond EEC

 $E3C(\chi) = \frac{1}{\sigma} \left[\frac{E_a E_b E_c}{O^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc})) \right]$

Model prediction:

 $\propto \chi^2$ $\propto c \text{EEC}(\chi)$ $\propto c \text{EEC}(\chi)$

 $\mathbf{E3C}(\chi)/\mathbf{EEC}(\chi)|_{\chi\to 0} \to 2c \approx 0.7$

o Go beyond EEC

• *c* determined from an entirely unrelated observable !

 $E3C(\chi) = \frac{1}{\sigma} \left[\frac{E_a E_b E_c}{O^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc})) \right]$ E_a $\sim E_c^2$ $\bullet E_c$ **Model prediction:** $\propto \chi^2$ $\propto c \text{EEC}(\chi)$ $\propto c \text{EEC}(\chi)$ $\mathbf{E3C}(\chi)/\mathbf{EEC}(\chi)|_{\chi \to 0} \to 2c \approx 0.7$

21

XL, Vogelsang, Yuan, Zhu, 2410.16371

22

o Go beyond EEC

Model prediction:

 $E3C(\chi) = \frac{1}{\sigma} \left[\frac{E_a E_b E_c}{O^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc})) \right]$

 R_L

 $E3C(\chi)/EEC(\chi)$

O Good agreement with ALICE

ALI-PREL-557452

ALI-PREL-557457

 $E3C(\chi)$

O Good agreement with ALICE

Conclusions

- side Energy Correlator and NP TMD
- O Agree with Pythia/LHC data across several orders of magnitude in the input energy
- O Deeper understanding?
- TMD physics using formal field theoretical tools

O Suggest a connection between the NP physics in the near

O Should be applicable to NEEC, di-hadron fragmentation **O** This in turn may indicate the possibility of understanding

Thanks