Search for Zc(3900) via Quantum Computing Machine Learning

Pan Huang

August 26, 2024

Pan Huang

Search for Zc(3900) via Quantum Computin

August 26, 2024

2 Classical Data Processing Procedure

Pan Huang

∃ > < ∃ >

Image: A marked black

æ

Data Set

- Zc(3900) decay chain $e^+e^- \rightarrow Zc(3900)^{\pm}\pi^{\mp}$ $Zc(3900)^{\pm} \rightarrow J/\psi\pi^{\pm}$ $J/\psi \rightarrow e^+e^-(\mu^+\mu^-)$
- Signal MC sample (BOSS 7.0.3)

decay tree	decay model
$e^+e^- ightarrow Zc(3900)^\pm \pi^\mp$	PHSP
$Zc(3900)^{\pm} ightarrow J/\psi\pi^{\pm}$	PHSP
$J/\psi ightarrow e^+e^-(\mu^+\mu^-)$	VLL

• Data Samlpe (BOSS 7.0.3)

4.260 GeV Data at BESIII of 2013

sample	luminaance	center-mass energy	Run number
1260			29677-30367
4200	4200 828.4±0.1±5.5 4257.97±0.04±0.00	31561-31981	

Good charged track selection

- $|\cos \theta| < 0.93, |V_z| < 10 cm, |V_r| < 1 cm$
- Four good tracks and zero net charge
- particle identification
 - p > 1 Gev/c identified as lepton
 - $p < 1~{\rm Gev/c}$ identified as π
 - The number of pions and that of leptons should be two in each event with zero net charge.
 - $E_{EMC} > 1.1$ GeV identified as e
 - E_{EMC} < 0.35 GeV identified as μ
- remove gamma-conversion background

•
$$\cos(\pi^+\pi^-) < 0.98$$

• $\cos(\pi^{\pm}e^{\mp}) < 0.98$

Classical Data Processing Procedure

- 4C kinematic Fit: $\chi^2 < 60$
- J/ψ mass window : $3.08 < M(l^+l^-) < 3.12 \text{ GeV}/c^2$
- sideband :

 $3.0 < M(l^+l^-) < 3.06$ and $3.14 < M(l^+l^-) < 3.20$ GeV/ c^2

We use events from the J/ψ mass window and select the maximum of $M(\pi^+ J/\psi)$ and $M(\pi^- J/\psi)$ as variables, then fit this to obtain the signal

Quantum Transform Introduction

Preliminary Selection

- Four good tracks, zero net charge
- π : p < 1 Gev/c
- lepton : p > 1 Gev/c
 - e : p > 1 Gev/c and $E_{EMC} > 0.8 GeV$
 - μ : p > 1 Gev/c and $E_{EMC} < 0.6 GeV$

Quantum Transform

- Model : Transform and Quantum Transform
- Parameter Set:17 variables
 - 16 variables: p_x, p_y, p_z and E_{EMC} of 4 charge tracks
 - χ^2 (4C kinematic fit)
- Signal : Signal MC
- Background is form data : $M(l^+l^-) \in (0, 3.06) \cup (3.14, 5) \text{ GeV}/c^2$

- Signal: background = 1:1
- Classical Transform :
 - 130k events (65k for train, 65k for validation)
 - 300 epochs
 - Learning rate : 0.0007 or 0.0009
- Quantum Transform :
 - 20k events (10k for train , 10k for validation)
 - 8 epochs
 - Learning rate : 0.0007 or 0.0009

Distribution of variables

Distribution of varisbles

3) J

ROC Curve

Classical, Lr: 0.0007

Quantum, Lr: 0.0007

August 26, 2024

< ロ > < 同 > < 三 > < 三 >

14/23

Classical, Lr: 0.0009

Quantum, Lr: 0.0007

Quantum, Lr: 0.0009

< A

Real data distribution

August 26, 2024

We apply the model to real data and set different background rejection rates.

ROC curve

Sig:130k; data:250k

Sig:130k; data:430k

We divided the data into three parts and then applied the model to each part separately.

Signal : 130k

Data : 130k

We divided the data into three parts and then applied the model to each part separately.

- Signal : 130k
- Data : 130k

Background rejection rate :99.7%

Test model

We reduce the number of epoch to train the model, and then apply the model.

Test Model

Signal : 130k Data : 430k Background rejection rate :99.7%

August 26, 2024

Transform 1: use 130k sideband data to train.

Transform 2 : use all sideband data (400k) to train.

	Transform 1	Transform 2	Cut
signal	7442(5.7%)	20146(15.5%)	55474(42.6%)
Data	1290(99.7%)	1290(99.7%)	1883(99.5%)