(Q)ParticleTransformer application in EW coupling of top quark at CEPC

Huayu Liu

liuhy288@sysu2.edu.cn

School of Science Sun Yat-sen University

September 9, 2024

Outline

- Introduction to the measurement of top quark EW couplings
- Code testing of $t\bar{t}$ jet tagging by ParT/PNet

First Section

1.Introduction to the measurement of top quark EW couplings

Project structure

- 1. Do the traditional method(cut-base) Select the $t\bar{t}$ case using some traditional variables.
- 2. Do the Machine learning method Compared with traditional cut-base ,whether using ML to distinguish $e^+e^- \to t\bar{t}$ events in CEPC from the background with the same final state is better?
- 3. Add quantum part to step2
- 4. **Comparison and Summary**Comprehensive comparison of three methods to evaluate the screening results of machine learning and the model after adding quantum part to ttbar

$t \bar t$ pair production

- 1. Signal process: $e^+e^- \rightarrow \gamma/Z \rightarrow t\bar{t}$
- 2. Final state: $l^{\pm}vl^{\mp}\bar{v}b\bar{b}$, $l^{\pm}vq\bar{q}b\bar{b}\checkmark$, all jets
 - t quark related information is largely retained in e/u or b-jet.
 - In the choosen final state, the contribution of MET is much more clear than others due to only one neutrino was produced from the process.
- 3. **Beam state:** 100% of the particles in a beam have a specific chirality, left-handed electrons and right-handed anti-electrons or right-handed electrons and left-handed anti-electrons
- 4. **Background:** Any process that have lyaqpb final states. The single top production which is difficult to distinguish $(W^* \to bt)$ and others like: $\mu\bar{\mu}, q\bar{q}, \gamma/Z, WW, ZZ, ZWW, ZZZ$

Figure: EW coupling vertax

Observables and Form Factors

• If both y/Z and tt are on-shell, EW coupling can be described by four Form Factors:

$$\Gamma_u^{Vt\bar{t}}(s) = -ie\{\gamma_u[F_{1V}^X(s) + \gamma_5 F_{1A}^X(s)] + \frac{\sigma_{uv}}{2m_t}(q_t + q_{\bar{t}})[i\frac{F_{2V}^X(s)}{2m_t} + \frac{F_{2A}^X(s)}{e}\gamma_5]\}$$

• Obtained σ_L , σ_R (left/right hand cross section), θ_L , θ_R (polar angle), $(A_{fb}^t)_L$, $(A_{fb}^t)_R$ (forward backward asymmetry) from the signal process.

They are the are obeservable which can be measured experimentally.

$$A_{FB}^t = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

ullet Four Observables $(\sigma_L,\sigma_R,(A^t_{fb})_L,(A^t_{fb})_R)$ can be shown by four Form Factors

Second Section

2.Code testing of $t\bar{t}$ jet tagging by ParT/PNet

My work

- My foucs: Application of machine learning methods in $t\bar{t}$ event selection.
- Current tasks: Test the application of an existing ParT/ParNet code for jet tagging at CEPC.
- Simple introduction to ParticleNet/ParticleTransformer:
 - 1. **ParticleNet** is a model based on GNN architecture that focuses on processing local inter-particle information.

Features: The interaction relationship between particles within a certain range can be captured through the relationship between points and edges.

Advantages: Compared with traditional feature engineering and manually defined variables, ParticleNet can automatically learn high-order features of particle injection, improving classification accuracy.

My work

2. **ParticleTransformer** is a deep learning model that combines self-attention mechanism and interaction between particles.

Features: Ability to flexibly model long-distance dependencies between particles and capture complex relationships between particles and jets.

Advantages: It can better handle the global dependence of particles, and is more robust in identifying jets and background noise.

Config of testing

- **Source**(without Quantum part):https://github.com/jet-universe/particle_transformer.
- input dataset

10 processes containing jets: $H \to b\bar{b}, H \to c\bar{c}, H \to gg, H \to 2W \to 4q, H \to 2W \to lvq\bar{q}, t \to bq\bar{q}, t \to blv, W \to q\bar{q}, Z \to q\bar{q}, Z(j)\bar{v}$.(produced by Shudong Wang) Each process has 100M in the training set, 20M in the test set, and 5M in the verification set. Source:/cefs/higgs/wangshudong/data/JetClass/Pythia

• features:

kin: only kinematic variables

$$\Delta \eta, \Delta \phi, log p_T, log E, log \frac{p_T}{p_T(jet)}, log \frac{E}{E(jet)}, \Delta R$$

full: kinematic variables + particle identification + trajectory displacement

- epochs:30,Batch Size:1024 , learning rate:0.01
- num_heads:8,num_lawyer:8,num_classlayers:2
- activation function:gelu
- model:ParticleNet/ParticleTransformer

Results

this time rivers thereon then

Results

		ParT_full	ParT_kin	PN_full	PN_kin
CEPC	\overline{AUC} $Accuracy$	>0.95	>0.95	>0.95	>0.95
	Accuracy	0.85246	0.74387	0.83939	0.6983
JetClass	\overline{AUC}	0.9877		0.9849	
dataset	Accuracy	0.861		0.844	

• \overline{AUC} is the average of AUC values between each two processes.

$$\overline{AUC} = \frac{\sum_{i=1}^{10} \sum_{j=1}^{11-i} AUC_{ij}}{\sum_{i=1}^{10} i}$$

- Accuracy is the accuracy rate of prediction for the entire test dataset
- There is no significant difference compared to the results in the paper, and there is no significant difference between PN and ParT.
- The results using all features are better than using only kin features.

Summary

- 1. Use ParT/ParNet to do jet tagging on CEPC MC data. It is verified that parNet and parT can be used for subsequent research.
 - The best bjet identification using traditional methods only has an accuracy of 0.7.
 - ullet It is verified that the two models of PN/ParT are equally effective when applied to CEPC data.
- 2. To do:Apply the model for $t\bar{t}$ selection.