

Institute of High Energy Physics (IHEP), CAS, China, 6 August, 2024

# Introduction

Brief Introduction to National Centre for Physics

➢Outer Tracker Phase 2 upgrade

### ➢Phase 2 upgrade projects at NCP

- □ Ladder Mechanics Project at NCP
- Sensor Quality Control project
- □ Assembly, metrology and testing of TB2S modules

### Summary

## Organogram of NCP



PHYSICS: Exp. HEP, Th. HEP, Accelerator, Laser Physics
NINVAST: National Institute of Vacuum Science and Technology
AITeC: Artificial Intelligence Technology Centre
PIAM-3D: Pakistan Institute of Additive Manufacturing

## Panoramic View of NCP

Central part of NCP



Total Area~ 25 Acre

## NCP Uniqueness

➢ One of a kind national research center in Physics & Emerging Techs.

- Breaking the scientific isolation of local researchers by conducting conferences, seminars, workshops.
- Unique Hosted Researcher Program For Students / Faculty from all national / international universities
- ➢ Connected with: CERN, ICTP & TWAS, IHEP, DESY and SESAME

## Hosted Researchers

- 1. <u>Adjunct Faculty:</u> Foreign/Local Researchers (Academia & R&D orgs.)
- 2. <u>Visiting Scholars:</u> Foreign / Local PhD Scholars up to 3 months
- 3. <u>NCP Associates:</u> Foreign / Local researchers up to 3 years
- 4. **Post-Doctoral Fellows:** Foreign / Local PhDs for 6 12 months
- 5. <u>Research Students:</u> Foreign / Local M.Phil / PhD 1– 3 years
- 6. <u>Internees:</u> For 3 6 months

# Some facilities at NCP



## Logistics Facilities at NCP

- 1. Auditorium (2, Capacity: 285, 70) with Record / Video Conf. Facilities
- 2. Computer Lab (50 latest general purpose computers)
- 3. Lecture Theater (Capacity: 60 persons)
- 4. Lecture Hall (3), Lecture Rooms (4), Conference Rooms (6)
- 5. Good furnished accommodation for researchers
  - 1. BoQs (Capacity, 100 guests)
  - 2. MoQs (Capacity, 50 guests)
  - 3. Guest House for foreign faculty (Capacity, 50 guests)
- 6. Cafeteria with seating capacity of 200 persons
- 7. Wi-Fi throughout the campus

## AS-ICTP like Organization of Scientific Events



06/08/2024

Institute of High Energy Physics, Beijing

Slide 36 of 39

# **Annual School on LHC Physics**







## Compact Muon Solenoid(CMS) Experiment



13

## The CMS Detector (real!)



06/08/2024

## Why we need to upgrade the detector?



Non-functional modules in CMS after accumulating 1000 fb<sup>-1</sup> integrated luminosity.

# Motivation for HL-LHC

- Motivation: To improve further the physics potential of the LHC for rare standard model and beyond standard model processes. The LHC will be upgraded to deliver an instantaneous luminosity up to 7.5 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>. Following are the main features of the upgraded detector:
- Improving luminosity: from ~500 fb<sup>-1</sup> to 3000 fb<sup>-1</sup>
- Radiation tolerance: Radiation hard technologies to withstand with fluences up to 2.3 x 10<sup>16</sup> n<sub>eq</sub>/cm<sup>2</sup> (in pixel layer 1)
- Increased granularity: Occupancy <1% in all tracker regions in order to ensure efficient tracking at high PU(~200)</p>
- Reduced material budget in the tracking volume to improve primary vertex reconstruction
- Extended tracking acceptance efficient tracking up to  $|\eta| = 4$
- Tracking information to be made available at trigger level for more selective L1 trigger (contribute to the event selection)
  - will improve the transverse momentum resolution of various objects at L1 (e.g. jets)
  - □ will allow the exploitation of information on track isolation.
  - will contribute to the mitigation of pileup

## LHC LONG TERM SCHEDULE



# CMS Phase 2 Upgrade

Replacements of existing system/detector Electronics upgrade/replacement New detector

#### L1-Trigger/HLT/DAQ [CMS-TDR-021 / 022]

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

#### Calorimeter Endcap [CMS-TDR-019]

- 3D showers imaging for pattern recognition
- Precision timing for PU mitigation
- Si. Scint+SiPM in Pb/W-SS

#### Tracker [CMS-TDR-014]

- P<sub>T</sub>module design for tracking in L1-Trigger
- Extended coverage to  $\eta \simeq 3.8$
- Much reduced material budget
- Si-Strip and Pixels increased granularity

#### Barrel Calorimeters [CMS-TDR-015]

- ECAL crystal granularity readout at 40 MHz
- Precision timing for e/y at 30 GeV, for vertex localization ( $H \rightarrow \gamma \gamma$ ) • ECAL and HCAL new Back-Endboards

#### Muon systems [CMS-TDR-016]

- DT & CSCnew FE/BE readout
- RPC back-end electronics
- Extended GEM coverage to  $\eta \simeq 3$
- New GEM/RPC 1.6 <  $\eta$  < 2.4

#### MIP Timing Detector [CMS-TDR-020]

- Precision timing for PU mitigation
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

# **Physics Motivation for HL-LHC**

#### >Yukawa and boson couplings as function of particle's mass



Run 1 data (left) and projection of the uncertainties(right) (assuming standard model couplings)

# Higgs Coupling Sensitivityat HL-LHC

# Projected HL-LHC uncertainties on Higgs couplings, extrapolated from Run 2 results



## BSM Higgses: Exotic Higgs boson decays to light Pseudoscalars

- Light scalar Higgs "a" from NMSSM could decay to hadronic and leptonic τ final states:
  - $\Box$  h —> aa —> bbtt, µµtt (hadronic and leptonic t decays).
- Searchers are interpreted in two-Higgs-doublet models extended with a scalar singlet (2HDM+S)
- Projected expected limits show increased sensitivity, of the order of SM cross section



# **Future Expectation**



#### CERN LPCC EP-LHC Seminar 1 March 2022

# Tracker Upgrade



# Module layers crossed by particles



At least six module layers are crossed by all particles in the rapidity range |η|<2.4 (except in the transition region)</p>

These are the minimum that ensures sufficiently robust track finding performance for the L1 trigger

### **CMS Tracker Material Budget**



➢ Reduced material budget in the tracking volume to improve primary vertex reconstruction
➢ Extended tracking acceptance up to  $|\eta| = 4$ 

# Acceptance enhancement



- Lowering pT threshold for triggering and increase in eta coverage maximize the acceptance
- Increase in acceptance from 2.4 to 3 corresponds to an increase in acceptance of about 15% for four leptons from Higgs decay with respect to Run II detector acceptance
- > No worsening of the mass resolution due to increase in pileup

# **TB2S Modules**

- The pT module concept relies on the fact that the strips of the top and bottom sensors of a module are parallel to each other
- > Stringent alignment constraints between top and bottom sensors in modules
- > Should be below 400 μrad for 2S module and below 800 μrad for PS modules





### Outer Tracker pT modules

- **D** pT module concept:
- > Exploit bending of charged particle tracks in CMS 3.8T B-field
- Correlate hits from 2 closely spaced sensors to form "stubs" compatible with a track p<sub>T</sub> > 2 GeV (stub is pair of hits in closely spaced sensors of the same module)
- Space/offset between two sensors and stub window is tuneable for p<sub>T</sub> threshold throughout the Outer Tracker
- □ Use of Tracking Information at L1 Trigger
- Provision of tracking information at L1 trigger will enhance performance (currently only muon and Calo.)
- $\blacktriangleright$  majority of hits are from low  $p_T$  tracks  $\rightarrow$  select hits from tracks with  $p_T > 2$ GeV (reduction by factor of 10)
- $\blacktriangleright$  "Stubs" are sent to the back-end at 40MHz  $\rightarrow$  track reconstruction  $\rightarrow$  L1 trigger decision
- On receipt of a L1 trigger, the complete event information is read out (750kHz)



LP.

### Phase 2 Tracker Performance

### Stubs well reconstructed with about 99% efficiency



## Tracker and GEM Upgrade Funding by Govt of Pakistan

> Two Exp. HEP related PC-1's approved by Govt. of Pakistan, namely,

1. The upgrade of the Compact Muon Solenoid (CMS) Silicon Strip Tracker and GEM detectors

Project Cost: PKR 275.75 +41 Million (~1.7 M CHF) (from 2018-onward)

- Upgrade of the Exp. HEP laboratory and IT infrastructure at NCP
   Project Cost EHEP Lab Upgrade: PKR 95.94 Million (from 2018-2020)
- ➤ Total funding of ~2.5 M CHF

### GE1/1 Project: Assembly and testing of GEM detectors

#### GE1/1 assembly and testing in Pakistan

- GE1/1 detector assembly inside Clean room of class
   10k
- Our assembly/testing sites were validated by CERN team in June 2018
- GEM detectors were assembled and tested successfully
- After Quality Control, the GEM detectors were shipped to CERN and installed as part of CMS experiment
- Worked on development of GEM software database







S EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH COMPACT MUON SOLENOID COLLABORATION



ini Geneva 27/06/2011

This is to certify the activities of the Pakistan group in the framework of the CMS-GEM Collaboration for the assembly and qualification of the GE1/1 detectors, as part of the Upgrade of the Muon Spectrometer of the CMS Experiment at the LHC accelerator at CERN.

The CMS Pakistan group has a commitment for the assembly and qualification of 30 GE1/1 detectors, which will be installed during the LHC Long Shutdown 2019-2020.

The production schedule of the GE1/1 detector foreseen the completion of the detectors construction and qualification by Aurumn 2018 to allow for the following integration with the front-end electronics and final detector characterization before the installation in to the CMS Experiment.

Due to delay in the finalization of the local GEM production site and delay in the availability of funding. Pakistan group to fuil fill the commitment decided to assemble and qualify the first batch of 10 GE1/1 detectors in the CERN laboratory. This has been possible due to the presence at CERN of two members of the Pakistan group for 6 months, entirely supported by the funding from Pakistan. In the mean time the Pakistan production site has been completed in the National Centre of Physics (NCP) and Optical Lab and has been fully validated by the inspection of GE1/1 Technical Coordinator on 5<sup>th</sup>-8<sup>th</sup> June.

A second batch of 5 kits, for the assembly of GE1/1 chambers is currently travelling to Pakistan and a second one will follow soon, for a total production of 20 GE1/1 chambers. The shipment of last 10 chambers will be decided together with the Pakistan group in the following months, depending on the production speed in Pakistan and the general GE1/1 production schedule, external constraints like variation in the expected installation schedule in to the CMS Experiment (which ould be anticipated), could require to build and qualify the last 10 detectors at TERN.

## R&D for Phase II upgrade of CMS Tracker

- Project started from scratch
- > Major sub-projects:
- 1. Lab development 2. Training of Manpower
- **3.** Qualification and testing of silicon sensors and modules. NCP is SQC Center





4. Assembly/testing of silicon modules at NCP. Prototyping finished. Built, tested and validated NCP is silicon module assembly center

(total eight CMS 2S module assembly centers)



5. Building 410 Al-CF TB2S ladders at NCP. Three prototypes successfully built at NCP and validated at CERN.

For production, has been awarded to a local company. The first three pre-production ladders have been built and senr to CERN. Pre-production ongoing.

(NCP is the only center building TB2S Ladders for CMS)

06/08/2024

## Silicon Sensor Qualification

# 3D Model of n-in-p Silicon Sensor



# **CMS Strip Silicon Sensor**

dimensions in µm



## **Sensors Qualification Lab Setup**

 $\Box$  SQC setup is operational: MPI Probe Station with motorized chuck with 2µm precision.

- 1. Six micro positioners installed. 2. Switching matrix system (crate and cards)
- 3. SMU's and pico-ammeters (Keithley 2636B, 2470 and 6517B) 4. LCR meter (Keysight-4980A)
- □ Fully automized with indigenously developed LabVIEW programs/vi's

**NCP** is validated silicon sensor qualification center of CMS!

06/08/2024


### Silicon Sensors Quality Control setup at EHEP Lab, NCP



About 2000 CMS Silicon Sensors have been qualified so far.

| 00/00/2027 | 06/ | <i>'</i> 08, | /2024 |
|------------|-----|--------------|-------|
|------------|-----|--------------|-------|

## **Sensors Visual Inspection and Placement**



## Sensor Storage in environmentally controlled cabinet

- Sensors storage cabinet is available to store sensor with control T and RH
- > T~ 20-25C and RH ~ 10-15%
- To keep stable environment in the cabinet, only it is opened for a short time just to put in and out the sensors
- Cleanroom T and RH is continuously controlled monitored at 20-25 C and 40-45% respectively



## Silicon Sensor Qualification



# SQC Requirements

| # | Parameters              | Limits                                                                             |  |  |
|---|-------------------------|------------------------------------------------------------------------------------|--|--|
| 1 | Global IV               | 600V@7.5μA (upper limit)<br>800 V, I800 < 2.5 x I600<br>1000 V, I1000 < 2.5 x I800 |  |  |
| 2 | Global CV               | ~ 3-4 nF                                                                           |  |  |
| 3 | Strip Current           | 50nA @ 600V                                                                        |  |  |
| 4 | Coupling Capacitance    | ~ 132 pF                                                                           |  |  |
| 5 | Inter-strip Capacitance | < 0.5 pF/cm                                                                        |  |  |
| 6 | Dielectric current      | < 10 nA@10 V                                                                       |  |  |
| 7 | Inter-strip Resistance  | > 50 GΩcm                                                                          |  |  |
| 8 | Polysilicon resistance  | ~ 1.5± 0.5 MΩ                                                                      |  |  |

## IV and CV (Batch no. 51028)



C<sub>c</sub>, C<sub>int</sub>, I<sub>strip</sub> and I<sub>diel</sub> Batch no. 51028



06/08/2024

Institute of High Energy Physics, Beijing

# R<sub>poly</sub> and R<sub>int</sub> (Batch no. 510280)



54 batches with about ~2000 silicon sensors have been qualified at NCP

-81.82

1.31

168.99

1.63

51028\_2S\_38

-163.38

-226.48

1.38

~225

130.63

## Silicon Module Assembly Setup

Developed Lab Setup for module assembly and testing

- Build 8 mechanical modules to validate dimensional accuracies and refine/fix locally made assembly jigs
- Built eight silicon modules(including kickoff modules). Tested, validated and presented in CMS meetings.
- **NCP** is one of the eight silicon module assembly center

Module assembly setup



LH-300T Robot 3-axis robot 







## Module Assembly Flow Chart



STEP 1: Optical Inspection



STEP 4: Bare-Module Assembly



STEP 2: PI-Strips & HV-tail Gluing







STEP 3: HV-tail Wirebonding & Encapsulation





STEP 6: Sensor-to-FEH Wirebonding & Encapsulation

## Wire/ball Bonding Setup for Silicon Modules

### Wire bonding setup is operational at NCP



Ball-wedge bonding machine is being installed



A unique facility

### Wire bonding machine-1



#### Wire bonding machine-2



## Outer Tracker Modules Assembly at NCP



Institute of High Energy Physics, Beijing

06/08/2024

49

# Module Metrology

- Needle method locally developed to perform metrology of modules using probe station
- Validated by measuring misaligned module







## Metrology summary Module Assembled

| Module Name       | Module<br>Type | Module Batch | Δx (μm)<br>tolerance<br>< 100 (μm) | Δy (µm)<br>tolerance<br>< 50 (µm) | ΔΘ (µrad)<br>tolerance<br>< 400(µrad) |
|-------------------|----------------|--------------|------------------------------------|-----------------------------------|---------------------------------------|
| NCP - F01         | 8CBC2          | Prototype    | 54                                 | 14                                | 374                                   |
| NCP - F02         | 8CBC3          | Prototype    | -13                                | -4                                | -22                                   |
| 2S_18_5_NCP-00001 | 25             | Prototype    | -15                                | -13                               | -22                                   |
| 2S_18_5_NCP-00002 | 25             | Prototype    | -1                                 | -9                                | -31                                   |
| 2S_18_5_NCP-00003 | 25             | Prototype    | 3                                  | 3                                 | 24                                    |
| 2S_18_5_NCP-00101 | 25             | Kick-off     | -7                                 | -1                                | 51                                    |
| 2S_18_5_NCP-00102 | 25             | Kick-off     | -6                                 | -1                                | -30                                   |

# IV Measurements at different assembly steps



### **8CBC3 Prototype Module**



#### **Kick-off Batch Modules**

**2S Prototype Module** 

Current (nA)

# Module Test Setup – 8CBC2/CBC3/2S







- SCBC2, SCBC3 and 2S modules testing setups are operational
- Burn-in testing setup is operational



# Thermoelectric Plate





# 2S module Functionality Test @ 300V



## **2S Module Testing Setups**

### Noise Test Measurement Setup

- FC7 Board in µTCA is used
- PH2\_ACF algorithm developed by CMS collaboration is used for noise measurement

### Cold test Setup

- Cold test box for testing single module
- Burn-in setup used to load and operate 10 modules at the same time



FC7 and µTCA



### Single Module test bench



Single module cold test setup



Multi module cold test burn-in setup

# **Burn-in Setup**

### Ready for testing 10 modules in parallel



## **Noise Measurements**



**Noise Level distribution for Kick-off Batch Modules** 

### Module Production Card Board Exercise in new Cleanroom



# Fabrication and Assembly of TB2S Ladders

# **CMS Outer Tracker Barrel**



## **TB2S Ladder Mechanics at NCP**



06/08/2024

Institute of High Energy Physics, Beijing

## **TB2S Ladder Mechanics**



\*\*\* Cooling pipe is a part of the ladder assembly but it is not in NCP's scope of work

# Water Jet Cutting

- Different Industrial Setups were Explored
- Experienced Setups for CF cutting = 2
- R&D was done in one of the Setups;
  - □ Fixtures were designed to hold the Profile at 3 Locations
  - Different Cutting Pressures were tested (30 to 70 kpsi)
  - □ Nozzle Dia = 0.5 mm



### **Fixture for C-Profiles**



### Tracker Mechanics Project: TB2S Ladders

- > Three ladder prototypes were designed, fabricated and assembled successfully at NCP
- Jigs, inserts fabricated and water jet cutting in a local company

1<sup>st</sup> Prototype Ladder – Proof of Concept sent to CERN in April 2019



**3<sup>rd</sup> Prototype Ladder** – planarity < 10 microns) shipped to CERN on **14 October, 2021** Tested for performance at CERN/Strasbourg, well appreciated!



Production of TB2S ladders will be done in local company

**2<sup>nd</sup> Prototype Ladder** – planarity < 30 microns Sent to CERN in **August 2020**, validated and tested at CERN/Strasbourg, well appreciated!









#### 06/08/2024

### Metrology of 3<sup>rd</sup> and 2<sup>nd</sup> prototypes ladders at Strasbourg/France





#### Observations:

- Measurement of the top surface, close to the hole
- Small inserts were not measured
- Mean planarity: ~ 3.5 μm
- \* 90% of inserts with planarity < 5  $\mu m$

Remark: CMM accuracy/repeatability of about 3.5 µm

**Conclusion:** measurement show good planarity for the inserts



Slide from Eric Chabert, presented on 24/11/2021 at CERN

## TB2S Ladders Pre-Production/Production

## **TB2S Ladders Assembly Workflow**



## Pre-Production: Metrology at CMM (dedicated setup)





- The dedicated metrology setup is prepared
- It has already been utilized to perform metrology on the three pre-production ladders.



### Planarity of Pre-Production Ladders



# Thermal Qualification setup

- A dedicated thermal qualification setup has been built at NCP and relocated to the company.
- A comprehensive thermal qualification procedure document has been drafted.
- To study the thermal performance of the ladder, equivalent twelve 2S modules load is applied by using heating elements





## Thermal Qualification of the Pre-Production Ladder

- Forty-eight heating elements installed
- Each heater dissipating approximately 0.8 Watts
- The thermal response is monitored
- ➤Torque ~6cNm
- Three pre-production ladders qualified



## Thermal QC of the 3<sup>rd</sup> Pre-Production TB2S Ladder



## Thermal QC of three Pre-Production Ladders


### **Pre-production ladders**



First pre-production ladder shipped to CERN on Jan. 10, 2024



2<sup>nd</sup> and 3<sup>rd</sup> pre-production ladder shipped to CERN on 16 May 2024 **Fourth pre-production** ladder assembly is in progress with modified Jig design.



Support sphere Type II Fitment Trials



Support sphere Type I Fitment Trials

Six precision granite control tables added for assembly on Jig 1.



### Inserts Manufacturing Summary

|                   | Qty Completed | Enough for no. of ladders |
|-------------------|---------------|---------------------------|
| Small Insert      | 1336          | ~61                       |
| Special Insert    | 97            | ~49                       |
| Large Insert Z-ve | 1635          | ~68                       |

Design for Z+ ladders is being finalized at CERN



## Cold Test of 1<sup>st</sup> Pre-production Ladder at CERN



### Test with 2S\_18\_5\_NCP-00102

- Ground balancer not connected.
- Module tests :
  - At room temperature in the single test box and on the ladder,
  - on the ladder, without screwing => verify the module works in cold,
  - On the ladder with screws at nominal torque 10cNm.
- · During the test :
  - Pedenoise taken at about 15°C, 0°C, -15°C, -20°C, -25°C, -30°C, -35°C,
  - One wire bond connection a bit loose FIXME chip+strip numbers, working and not working a bit randomly,
  - One wire bond stopped to work at some point.
- After the test and the module is removed from the ladder, and removing the electrical pigtail => service hybrid mechanically disconnected.
  - not glued in the first place,
  - Should we glue for the full ladder test ?

Slide from Jeremy Andrea



NCP module on NCP Ladder at CERN

8

## Cold test of Ladder with 12 2S Modules (first test!)





#### Preparation of TB2S Ladder Cold Test at CERN

Mohsin Abbas (CERN), Jeremy Andrea (IPHC), Irfan Asghar (NCP), Pier Filippo Cianchetta (CERN), Laurent Gross (IPHC), Clément Hass (IPHC), Lea Stockmeier (KIT), Cristiano Turrioni (Perugia), Giovanni Zevi Della Porta (CERN), June 13, 2024



KIT - The Research University in the Helmholtz Association

www.kit.edu

| 08/2024 |
|---------|
|---------|

## Silicon detector lab development



Well-equipped Semiconductor detectors Lab in 2023! And well trained person power!



Institute of High Energy Physics, Beijing

### Physics Projects: Some Physics Analysis Projects Finished at NCP

- The cross section measurement of top quark in association with Z boson (Measured for the first time in any HEP experiment)
  - Analysis Note: CMS/AN-14-182 and CMS/Top-12-039 (published in JHEP, arxiv.org/abs/1702.01404)
  - Analysis at 13 TeV, Note: CMS/AN-16-285, CMS/Top-16-020 (published in PLB)
- Measurement of ttabr cross-section in I+jets channel at 13 TeV Documented in CMS Paper: Top-16-006
- Search for Microscopic Black Holes with the Early Run 2 CMS Data
  Documented in CMS Paper: EXO-15-007
- Measurement of CKM matrix elements in single top quark t-channel production in protonproton collisions at sqrt (s) = 13 TeV
- Measurement of the single top quark and antiquark production cross sections in the tchannel and their ratio in proton-proton collisions at sqrt{s}= 13 TeV
- Measurement of the inclusive single top t-channel cross section at 13TeV (2016 data) CMS-TOP-17-001

### tqZ Results @ 13 TeV

#### Signal Strength Calculated by simultaneously. Fitting tZq and ttZ region



Expected Signal Strength : 1.66  $^{+0.66}_{-0.60}$ Expected Significance : 1.95  $\pm$  0.09  $\sigma$ Observed Significance : 2.81  $\sigma$ 



First measurement of tqZ!

Feasibility studies of further rare top processes are in progress.

# Summary

- The three main Phase-2 upgrade projects are progress well
- 1. SQC status: The last batches of Silicon sensor qualification are being tested. The project is going to finish this month
- 2. Module Production: Ready for production, kickoff modules assembled and tested. One kickoff module is at CERN now. Production will commence as soon as module components arrives.
- 3. Ladder production: In progress in a local company
- 4. GEM (GE1/1) project successfully finished



| 06/08/2024 |
|------------|
|------------|

# Some wire bonds silicon and hybrid!



## **Outer Tracker R-Z view**



Figure 3.1: Sketch of one quarter of the Outer Tracker in *r*-*z* view. Blue (red) lines represent PS (2S) modules. The three sub-detectors, named TBPS, TB2S, and TEDD, are indicated. All overlapping layers are shown separately, while in Fig. 2.3 the mean positions are shown.

# Other designs





# **Two Level Trigger System**

### Level-1 Trigger (L1T)

 Hardware-based Trigger
 Uses low-res detector information from calorimeter and muon
 No tracker in the trigger decision
 Data stored in on-detector buffers

3.8 µs to take a decisionLimited by tracker buffer size



Data bandwidth reduced from 40 MHz (as delivered by detector) to 100 kHz (~ 100 GB/s)

# High-Level Trigger (HLT)

#### Dedicated Computer farm with ~ 26000 cores

- □Using full-detector information
- □Two-stage event selection
  - Only calorimeter, ~ 50 ms
  - ✤ Full-detector, w/ tracking & PF, ~ 1 sec
- Data rate is reduced from 100 kHz -> 1kHz
  - I GB/sec, which is stored on disk
- ➢Plan to use tracker at LVL1 in HL-LHC
  - Improved resolution, identification, pile-up rejection
  - $\Box$  Max rate 100  $\rightarrow$  750 kHz
  - $\Box Latency 3.8 \rightarrow 12.5 \ \mu s$

#### ≻HLT

- $\Box$ Output rate 1 kHz  $\rightarrow$  7.5 kHz
- Even higher computing power would be needed



### Sensors to qualify for the CMS phase-II upgrade project

| Туре | Outer  |         | Active |         | Strip/Pixel Cell |        | Quantity |
|------|--------|---------|--------|---------|------------------|--------|----------|
|      | width  | length  | width  | length  | pitch            | length | needed   |
| 25   | 94 183 | 102 700 | 91 488 | 100 703 | 90               | 50 260 | 15 216   |
| PS-s | 98 140 | 49 160  | 96 055 | 47 163  | 100              | 23 479 | 5 592    |
| PS-p | 98 740 | 49 160  | 96 055 | 47 163  | 100              | 1 467  | 5 592    |

#### At NCP SQC site- 2S sensors

The 2S and PS-s strip sensors share a common design of the periphery (bias, guard and edge ring) and also the active strip area is identical with exception of the strip pitch and length





#### SQC proposed tests



| 6/08/2024 | Institute of High Energy Physics, Beijing | 90 |
|-----------|-------------------------------------------|----|
| 0,00,202. |                                           |    |

### Thermal QC of the 1<sup>st</sup> Pre-Production TB2S Ladder



### Thermal QC of the 2nd Pre-Production TB2S Ladder

