Star Clusters as Cosmic Ray accelerators

Giovanni Morlino

INAF/Osservatorio astrofisico di Arcetri - Firenze - ITALY

2nd LHAASO symposium — 20-25 March 2025, Hong Kong (China)

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE

The role of star clusters in the SNR paradigm

The role of star clusters in the SNR paradigm

Recently several massive star clusters have been associated with gamma-ray sources

Cygnus Cocoon HAWC coll. Nat. Astr. (2020)

Westerlund 1; HESS coll. A&A (2022)

Cygnus cocoon

- Extended emission:
 - beyond 50 pc for HAWC and Fermi-LAT
 - → and up to ~150 pc for LHAASO
- Hard spectrum in GeV band
- Softening in TeV band
- Photons detected by LHAASO with E > PeV

Cygnus Cocoon FermiLAT -Ackermann et al. (2011)

HAWC coll. (2020)

Correlation between YMSCs and Fermi-LAT unassociated sources

G. Peron et al. ApJL 972 (2024)

The case of NGC 3606: the HII region well overlap with the predicted bubble size

What power Stellar Clusters?

Phase	Source	Time-scale
$t \lesssim 3 \mathrm{Myr}$	MS stellar winds	$t \gtrsim Myr$
$3 \mathrm{Myr} \lesssim t \lesssim 7 \mathrm{Myr}$	WR stellar winds	$t \sim 10^5 \mathrm{yr}$
$3 \mathrm{Myr} \lesssim t \lesssim 30 \mathrm{Myr}$	r SNe	$t \sim 10^3 - 10^4 \mathrm{ym}$

Stellar cluster kinetic luminosity

$3 \text{ Myr} \lesssim t \lesssim 30 \text{ Myr}$: stellar winds + SNe

What power Stellar Clusters?

Phase	Source	Time-scale
$t \lesssim 3 \mathrm{Myr}$	MS stellar winds	$t \gtrsim Myr$
$3 \mathrm{Myr} \lesssim t \lesssim 7 \mathrm{Myr}$	WR stellar winds	$t \sim 10^5 \mathrm{yr}$
$3 \mathrm{Myr} \lesssim t \lesssim 30 \mathrm{Myr}$	SNe	$t \sim 10^3 - 10^4 \mathrm{yz}$

Stellar cluster kinetic luminosity

$3 \text{ Myr} \lesssim t \lesssim 30 \text{ Myr}$: stellar winds + SNe

G. Morlino — Hong Kong, 21 March 2025

main uncertainty due to mass loss rate of the winds

Cluster wind physics

8

 $t \leq 3$ Myr: only stellar winds

 Wind-blown bubble: adiabatic model from Weaver & McCray (1977)
 Constant injection of energy in time in a spherical symmetry

 $R_{\text{cluster}} \simeq 1 - 2 \, \text{pc}$ Observation of star distribution

$$R_{\rm TS} \simeq 20 \ {\rm pc} \left(\frac{\dot{M}}{10^{-4}M_{\odot}/yr}\right)^{3/10} \left(\frac{v_w}{1000 \ {\rm km/s}}\right)^{1/10} \left(\frac{\rho_0/m_p}{{\rm cm}^{-3}}\right)^{-3/10} \left(\frac{t_{\rm age}}{{\rm Myr}}\right)^{1/10} \left(\frac{w_w}{{\rm Myr}}\right)^{-3/10} \left(\frac{w$$

 $R_{\rm CD} \simeq R_{\rm bubble}$ Rapid cooling of shocked ejecta

$$R_{\text{bubble}} \simeq 55 \text{ pc} \left(\frac{\dot{M}}{10^{-4}M_{\odot}/\text{yr}}\right)^{1/5} \left(\frac{v_w}{1000 \text{ km/s}}\right)^{2/5} \left(\frac{\rho_0/m_p}{\text{ cm}^{-3}}\right)^{-1/5} \left(\frac{t_{\text{age}}}{\text{ Myr}}\right)^{1/5}$$

Inside the SC core:

- Colliding winds from binary stars (fraction of massive stars in binary systems ~50%-100%)
- Single stellar wind termination shocks

Relevant adiabatic losses for particle escaping the bubble

Inside the SC core:

- Colliding winds from binary stars
 (fraction of massive stars in binary systems ~50%-100%)
- Single stellar wind termination shocks

Inside the hot bubble:

- Acceleration due to turbulence (II order)
- Collective cluster wind termination shock

Inside the SC core:

- Colliding winds from binary stars (fraction of massive stars in binary systems ~50%-100%)
- Single stellar wind termination shocks

Inside the hot bubble:

- Acceleration due to turbulence (II order)
- Collective cluster wind termination shock

Entire bubble:

SNR shocks

Inside the SC core:

- Colliding winds from binary stars (fraction of massive stars in binary systems ~50%-100%)
- Single stellar wind termination shocks

Inside the hot bubble:

- Acceleration due to turbulence (II order)
- Collective cluster wind termination shock

Entire bubble:

SNR shocks

Caveat 1: non spherical evolution

Pure adiabatic model

[Weaver & McCray (1977)]

Effects that produce HD instabilities:

- ISM inhomogeneities
- Wind clumpiness (WR)
- Cooling

Effects that damp HD instabilities:

- Magnetic field pressure

Realistic fractal structure

Important for:

- Particle transport
- **Emission processes**

[see e.g., L. Lancaster et al. (2021)]

II order Fermi acceleration due to turbulence

The hot bubble is expected to be highly turbulent Space-diffusion and momentum-diffusion connected by $D_{xx}D_{pp} = \frac{1}{0}p^2V_A^2$ (Thornbury & Drury 2014) * 1st order Fermi acceleration timescale $\tau_{\rm acc} \approx 8 D/V_{\rm sh}^2$ * 2nd order Fermi acceleration timescale $\tau_{\rm acc} \approx 3 D/V_{\rm A}^2$

Maximum energy taking into account escape:

1st and 2nd order may have similar timescales if $V_A \sim V_{\rm sh}$ $V_A = \frac{B}{\sqrt{4\pi\rho}} \simeq 200 \left(\frac{B}{10\mu G}\right) \left(\frac{n}{0.01}\right)^{-1} \text{km s}^{-1}$

$$\left(\frac{V_A}{100 \,\mathrm{km/s}}\right) \,\mathrm{TeV}$$

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock
 - Acceleration efficiency ~1-10 %

GM, Blasi, Peretti & Cristofari (2019)

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock ► Acceleration efficiency ~1-10 %
- Magnetic turbulence produced by MHD instabilities
 - Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm

1) MHD turbulence:

Assuming a fraction η_B of kinetic energy converted into magnetic field

$$\frac{\delta B^2}{4\pi} 4\pi r^2 v_w = \frac{1}{2} \eta_B \dot{M} v_w^2 \Rightarrow \delta B(R_s) \simeq 4 \mu G \left(\frac{\eta_B}{0.05}\right)^{\frac{1}{2}} \left(\frac{1}{10^{-10}}\right)^{\frac{1}{2}} \left(\frac{1}$$

GM, Blasi, Peretti & Cristofari (2019)

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock ► Acceleration efficiency ~1-10 %
- Magnetic turbulence produced by MHD instabilities
 - Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm

2) Self-generated magnetic turbulence Applying resonant instability:

$$\mathscr{F}_{0}(k) = \frac{\pi}{2} \frac{\xi_{\text{CR}}}{\Lambda_{p}} \frac{v_{\text{sh}}}{v_{A}} = \frac{\pi}{2} \frac{\xi_{\text{CR}}}{\Lambda_{p}} \eta_{b}^{-1/2} \simeq 0.06 \frac{\xi_{\text{CR}}}{0.1} \left(\frac{\eta_{B}}{0.05}\right)$$

3) Non-resonant instability is suppressed (too small current)

GM, Blasi, Peretti & Cristofari (2019)

- Self-amplification may be -1/2relevant al low energies but not at high energies

Acceleration at the collective wind termination shock [GM et al. (2019)]

- Particle injected and accelerated at the termination shock ► Acceleration efficiency ~1-10 %
- Magnetic turbulence produced by MHD instabilities
 - Diffusion coefficient depends on the type of turbulence cascade: Kolmogorov, Kraichnan, Bohm
- Particle diffuse and interact in the bubble

GM, Blasi, Peretti & Cristofari (2019)

Solution at the shock

$$f_{s}(p) = s \frac{\eta_{\text{inj}} n_{1}}{4\pi p_{\text{inj}}^{3}} \left(\frac{p}{p_{\text{inj}}}\right)^{-s} e^{-\Gamma_{1}(p)} e^{-\Gamma_{2}(p)}$$
Standard power-law
for plane shocks
$$s = \frac{3\sigma}{\sigma - 1}$$
Cutoff due to particle confinem
upstream in a spherical geome

due to particle g from the bubble nent etry

Solution at the shock

GM, Blasi, Peretti & Cristofari (2019)

 $\frac{1}{2} - \Gamma_2(p)$ Cutoff due to particle escaping from the bubble confinement al geometry $\frac{1}{2} - \Gamma_2(p)$ Bohm Kraichnan 0.001 -----Kolmogorov p [TeV/c]

Spatial profile: the harder is the diffusion coefficient the flatter is the CR distribution

The case of Cygnus Cocoon

22

Menchiari, GM, Amato, Bucciantini & Beltran (2024) Blasi & GM (2023)

Assumed properties

- Wind luminosity $\simeq 2 \times 10^{38} \,\mathrm{erg \, s^{-1}}$
- Ejecta mass $\dot{M} \simeq 10^{-4} M_{\odot} \,\mathrm{yr}^{-1}$;
- wind speed $v_w \simeq 2300 \,\mathrm{km s^{-1}}$
- Cluster age $\simeq 3 \,\text{Myr}$
- * Average ISM density $\simeq 10 \, \text{cm}^{-3}$

Wind luminosity inferred from stellar population as reported by Wright et al. (2015) **MNRAS**, 449, 741

Estimated size of the bubble $\simeq 90 \text{ pc}$

Termination shock radius $\simeq 13$ pc

The case of Cygnus Cocoon

- * Large magnetic field required ($\eta_B \gtrsim 20\%$)
- Kolmogorov diffusion excluded (requires too much wind power)
- Kraichnan is not sufficient at highest energies
- Bohm may explain high energy data but Fermi-LAT data are not well fitted
- Difficult to reproduce the extension of ~150 pc

Menchiari, GM, Amato, Bucciantini & Beltran (2024) Blasi & GM (2023)

Onset of SN explosion \rightarrow super-bubbles

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
 - The SNR dies inside the bubble in a timescale shorter than isolated SNR: ($v_{sh} = c_s @ \sim 10^4 \text{ yr}$)
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time

Onset of SN explosion \rightarrow super-bubbles

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
 - The SNR dies inside the bubble in a timescale shorter than isolated SNR: ($v_{sh} = c_s @ \sim 10^4 \text{ yr}$)
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time

for the Gaia clusters

Maximum energy of SNR vs WTS

G. Morlino — Hong Kong, 21 March 2025

Mitchell et al. arXiv: 2403.16650

Super-bubbles: intermittency

- **Energetically Super-bubbles may produce the bulk of CRs**
- Maximum energy can reach ~PeV
- The spectrum is not universal -> strong intermittency

WTS+SNRs: application to some known SCs

Applying the model of WTS+SNR for three SCs detected in gamma-rays:

- Uncertainty due to SC masses and wind models
- WTS alone is not sufficient to explain the gamma-ray flux (assuming 10% efficiency)
- SNR are needed (#SNe estimated according to SC age and mass)
- Flat spectra (Wd2 & NGC 3603) require Bohm like diffusion in the bubble *

[Mitchel, GM, Celli, Menchiari, Specovious (2024) arXiv:2403.16650]

The unresolved clusters

SC bubbles are very large \Rightarrow diffuse sources with low surface brightness \Rightarrow difficult to detect

$$R_{bubble} \simeq 2.9^{\circ} \left(\frac{L_{w}}{2 \times 10^{38} \,\mathrm{erg/s}}\right)^{1/5} \left(\frac{n_{\mathrm{ism}}}{10 \,\mathrm{cm}^{-3}}\right)^{-1/5} \left(\frac{t_{\mathrm{age}}}{1 \,\mathrm{Myr}}\right)^{3/5} \left(\frac{d}{2 \,\mathrm{kpc}}\right)$$

May SC contribute to diffuse γ -ray emission?

- How many SC there are in the Galaxy
- •How are they distributed?

Gaia satellite has observed thousand of SCs but:

- •Not clear if Gaia catalogue is complete (maybe only for $d \leq 2 \,\mathrm{kpc}$)
- •Difficult to detect young clusters ($t \leq 1 2$ Myr) embedded in the
- parent molecular cloud due to stellar light extinction
- •Difficult to resolve the most inner stars: core very dense (mass segregation)

 \Rightarrow The problem may be handled with synthetic population

Claimed discrepancy between diffuse emission due to CR and observations

- The Galactic cluster population is only known within ~2 kpc from the Sun *
- We can build a synthetic SC population. *

Several physical ingredients are needed:

- Clusters population (local population extrapolated to the entire Galaxy following the gas density)
- Stellar population inside clusters
- Stellar wind physics
- Bubble dynamics (depends on local density)
- Gas density from cloud distributions
- Particle acceleration model (WTS; WTS + SNRs)

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Example of a synthetic SC population

Single realisation of stellar cluster population with:

• Age < 10 Myr

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Applied masks

The SC gamma-ray bubble are masked to be consistent with the method used by the LHAASO coll.

Masks:

1) 2)

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Galactic plane ($l \le 70^\circ$, $|b| \le 1.5^\circ$) and local arm ($l = 73.5^\circ$, b = 0) All SCs having surface brightness at 100 TeV > 5 times the average diffuse emission

LHAASO mask

Contribution of SCs to the diffuse Galactic *γ*-ray emission [Menchiari, GM et al. (2024) arXiv:2406.04087]

Contribution of SCs + SNRS in clusters

The inclusion of SNR tends to over-predict the diffuse gamma-ray flux: Smaller density around clusters? More significant role of energy losses?

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Gas density and the question of grammage

$\bar{n} \simeq 10 \text{ cm}^{-3}$

Particle density distribution in Giant Molecular Clouds [Hou & Han, 2014]

Weaver & McCray, ApJ 218 (1977)

> Average density small if diffusion outside the bubble is fast $\langle n \rangle \simeq 10^{-2} \,\mathrm{cm}^{-3}$

> > Grammage is negligible

Idealised wind-blown bubble

Average density felt by diffusing particles \rightarrow depends on the clump distribution and by diffusion around each clump $\langle n \rangle \simeq 10 \ \mathrm{cm}^{-3}$

Grammage can be relevant

G. Morlino — Madison, 15 October 2024

Spectrum of H and heavier nuclei escaping from the bubble

Spectrum of different species escaping the bubble for a young MSC (like Cygnus OB2 $L_{wind} \gtrsim 10^{38} \text{ erg/s}$)

* H and He can escape the bubble suffering only a little energy losses

[P. Blasi, GM (2024) MNRAS 533, 561]

10³⁷ $n = 10 \text{ cm}^{-3}$ Н 10³⁶ 4 He + 3 He $E^2\phi(E)4\pi R_b^2$ 10³⁵ 10³⁴ 10³³ 10² 10^{1} 10³ 10^{4} 10⁵ 10^{6} E [GeV/n]

G. Morlino — Madison, 15 October 2024

Spectrum of H and heavier nuclei escaping from the bubble

Spectrum of different species escaping the bubble for a young MSC (like Cygnus OB2 $L_{wind} \gtrsim 10^{38} \text{ erg/s}$)

- H and He can escape the bubble suffering only a little energy losses
- Spallation for heavier nuclei is much stronger ($\sigma_{sp} \propto A^{0.7}$)
 - Nuclear have a harder spectrum
 - The flux normalisation is suppressed

Possible caveats:

- Heavier nuclei may be mainly produced by isolated SNRs?
- SNR acceleration may be modified in wind-bubbles
- Heavier nuclei may be mainly produced at later phase of the bubble, when the diffusion is not suppresses any more

[P. Blasi, GM (2024) MNRAS 533, 561]

G. Morlino — Madison, 15 October 2024

Conclusions

- Stellar clusters play a crucial role in the origin of cosmic rays *
 - They host the majority of core-collapse SNe
 - They shape the environment where SNRs expand Powerful stellar winds may accelerate CRs in addition to SNR shocks
- SCs may help to resolve several issues:
 - Significant contribution to diffuse γ-ray Galactic emission
 - Maximum energy of CRs (most promising are SNR expanding into wind bubbles)
 - Anomalous chemical composition (acceleration of wind material)
 - Spectral anomalies
 - The accumulated grammage produce harder spectra for heavier species
 - Good for p/He ratio, not for heavier elements
- It is crucial to better understand the time evolution of both wind bubbles and SNR inside them *

Backup slides

Energetics: SNe vs Stellar Winds

Salpeter (1955) initial mass function of stars inside a clust

Power injected by SNe

$$P_{\rm SNe} = 10^{51} {\rm erg} \int_{8M_{\odot}}^{M_1} f(M) \, dM$$

Power injected by winds

$$P_{\text{wind}} = \int_{M_{\text{min}}}^{M_{\text{max}}} \left(\frac{1}{2}\dot{M}_{w}(M)v_{w}(M)\right)^{2}$$

$$\frac{P_{\text{wind}}}{P_{\text{SNe}}} \simeq 0.1 \div 0.5$$

Not accounting for WR stars

✤ Not accounting for failed supernovae ~10% of the total [Adams et al. (2017, MNRAS 469)]

ter:
$$f(M) = \frac{dN_{\text{star}}}{dM} \propto M^{-2.35}$$

Stars with $M \gtrsim 8M_{\odot}$ explode as SNe

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Gamma-ray emission

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Gamma-ray emission

ξ

 <u>Radial distribution</u>: rescaled with the molecular cloud spatial distribution

[Menchiari, GM et al. (2024) arXiv:2406.04087]

$$f_c(M, t, R, z) = \frac{dN_c}{dM \, dt \, dR \, dz} = \xi_c(M) \, \psi_c(t) \, \rho_c(R, \theta_{\text{arm}}) \, g(z)$$

 Mass distribution based on observation of local clusters ($d \leq 2 \,\mathrm{kpc}$) Milky Way Stellar **Cluster Survey** [Piskunov et al. (2018)]

$$G_c(M) \propto M^{-\alpha}$$
 with $1.1 < \alpha < 1.6$

 <u>Age distribution</u> ~ constant in the last ~100 Myr with a surface star formation rate in the solar neighbourhood given by [Lamers & Gieles (2006)]

$$\langle \psi_c \rangle_{SN} \simeq 350 \, M_\odot \, \mathrm{Myr}^{-1} \, \mathrm{kpc}^{-1}$$

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

• Stellar mass distribution according to Kroupa (2001)

$$\xi_s(M) = \frac{dN}{dM} \propto \begin{cases} M^{-1.3} & 0.08 \le M/M_{\odot} \le 0.5 \\ M^{-2.3} & 0.5 \le M/M_{\odot} \le M_{\text{max}}^* \end{cases}$$

 Maximum stellar mass according to Weidner & Kroupa (2004) The maximum stellar mass play a crucial role

because the wind power is mainly

determined by the most massive stars

$$M_{\star, \max} \propto M_{\rm SC}$$

Maximum stellar mas as a function of the cluster mass for different models [Fig. 1 from Weidner & Kroupa, 2004]

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

[Menchiari, GM et al. (2024) arXiv:2406.04087]

 Analytical approximation for the mass loss rate [Nieuwenhuijzen & de Jager (1990)]

$$\dot{M}_s \simeq 10^{-14} \left(\frac{L_s}{L_\odot}\right)^{1.42} \left(\frac{M_s}{M_\odot}\right)^{0.16} \left(\frac{R_s}{R_\odot}\right)^{0.81} \frac{M_\odot}{\rm yr}$$

• Wind speed from line-driven wind models [Kudritzki & Puls (2000)] The wind velocity is generally larger than the escape speed due to the radiation pressure from the star

$$V_{w,s} = C(T_{\text{eff}}) v_{\text{esc}}$$

$$V_{esc} = \sqrt{2G_N M_s / R_s (1 - L/L_{\text{Edd}})}$$

$$C_{eff} = \begin{cases} 1.0 & T < 10^4 \text{K} \\ 1.4 & 10^4 \text{K} < T < 2.1 \\ 2.65 & T > 2.1 \times 10^4 \text{K} \end{cases}$$

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Gamma-ray emission

[Menchiari, GM et al. (2024) arXiv:2406.04087]

 Wind-blown bubble model of Weaver & McCray (1977) Constant injection of energy in time in a spherical symmetry

 Correction due to cooling at the contact discontinuity: using a phenomenological recipe based on simulation from Lancaster L. et al. (ApJ 914, 2021)

 $R_{\text{bubble}} = f_{\text{cool}}(t) R_{\text{bubble}}^{\text{WM}}$

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

Gamma-ray emission

[Menchiari, GM et al. (2024) arXiv:2406.04087]

 Acceleration at the wind termination shock [GM, Blasi, Peretti, Cristofari (2019)]

Several physical ingredients are needed to describe a realistic population of SCs:

- Clusters population
- Stellar population inside clusters
- Stellar wind physics
- Cluster wind physics
- Particle acceleration model
- Gas distribution (target)

[Menchiari, GM et al. (2024) arXiv:2406.04087]

Gas distribution in the Galactic plane according to the one implemented in the GALPROP code including atomic and molecular Hydrogen

