Interpreting the Galactic Diffuse emission from GeV to PeV

Giada Peron In collaboration with V. Vecchiotti, S. Menchi

LHAASO 2nd Symposium - Hong Kong - 21.03.2025

In collaboration with V. Vecchiotti, S. Menchiari, E. Amato, G. Morlino, G. Pagliaroli & F. Villante

The Galactic diffuse emission

 $\varphi_{GDE} = \varphi_{diff} + \varphi_{unres}$ pp Bremm.

The Galactic diffuse emission at GeV energies Emissivity/H atom @ 2 GeV

Enhancement of a factor ~5 compared to local CR in the inner Galaxy

The Galactic diffuse emission The role of the masks

Galactocentric distance [kpc]

Galactocentric distance [kpc]

The Galactic diffuse emission 3.4

The Galactic diffuse emission The role of unresolved sources

Synthetic source population

- Distributed as PSRs (Lorimer+2006)
- Luminosity age dependent
- Luminosity function tuned on H.E.S.S. catalog
- Number ~ 2/century

The Galactic diffuse emission The role of unresolved sources

Synthetic source population

- Distributed as PSRs (Lorimer+2006)
- Luminosity age dependent
- Luminosity function tuned on H.E.S.S. catalog
- Number ~ 2/century
- Sources are considered unresolved for KM2A if $F_{\gamma}(50 \ TeV) < F_{sens}(50 \ TeV)$

 $15^{\circ} <$

 $15^{\circ} <$

 $125^{\circ} <$

δ₂₀₀₀ [°]

		$N_{ m R}$	$arphi_{ m R}$	$arphi_{\mathrm{UNR}}$	$arphi_{ ext{UNF}}$
$l<235^\circ, b <5^\circ$	MC	84^{+9}_{-9}	$1.69^{+0.62}_{-0.43}\times10^{-14}$	$2.82^{+0.15}_{-0.14}\times10^{-15}$	_
	KM2A	65	1.51×10^{-14}	_	_
$l < 125^{\circ}, b < 5^{\circ}$	MC	72^{+8}_{-8}	$1.32^{+0.37}_{-0.33}\times10^{-14}$	$2.56^{+0.14}_{-0.16}\times10^{-15}$	$2.23\substack{+0.34 \\ -0.36}$
	KM2A	55	1.38×10^{-14}	_	_
$< l < 235^\circ, b < 5^\circ$	MC	$12\substack{+4\\-4}$	$2.82^{+1.8}_{-1.1}\times10^{-15}$	$2.53^{+0.46}_{-0.35}\times10^{-16}$	$2.08\substack{+0.49 \\ -0.34}$
	KM2A	10	1.30×10^{-15}	—	

 $< 2\sigma$

The Galactic diffuse emission The role of unresolved sources

The Galactic diffuse emission **Intrinsic uncertainties**

~ 20/50% difference with different gas tracers

~ 10/20% effect on the DGE

Vecchiotti, GP,+2025

Up to 150% effect on the DGE depending on energy

The Galactic diffuse emission

The Galactic diffuse emission

What else?

Vecchiotti, GP,+2025 [Adapted]

An excess is still there unresolved population

Vecchiotti, GP,+2025

Cannot be accounted by all these effects incl. a PSRs

Vecchiotti, GP,+2025 [Adapted]

An excess is still there

Cannot be accounted by all these effects incl. a PSRs unresolved population -> Star clusters are large and faint...

What else? The role of star clusters

Synthetic source population of SCs

- Spatially distributed as giant molecular clouds;
- Acceleration computed following Morlino+2021 assuming different diffusion regimes and 10% acceleration efficiency;
- Hadronic emission considering target of 10 cm-3
- Normalized to the cluster formation rate throughout the Galaxy
- Stellar population modeled with Kroupa's IMF for each cluster
- SCs are considered unresolved for KM2A if they are 5-sigma $\phi_{\gamma}(100 \ TeV)$

above background :

See details in Menchiari, Morlino,..., GP,+2025

....Several assumptions but

> 5*0*

...We obtain reasonable level of emission (this is not a fit)

Molecular clouds Probes for Galactic diffuse emission

Gamma rays from clouds

Assuming local CR distribution

$$A = M_5 / d_{kpc}^2$$

Outlook

- The galactic diffuse emission GDE encodes the information about CR distribution
- Current measurements are limited to regions where it is hard to unveil a hardening;
- The contribution of ~point-like unresolved sources should be negligible in the area measured by LHAASO; but not in other regions of the Plane
- Star clusters could produce a substantial contribution to the GDE but the models should be tuned with more observations;
- The study of clouds can give insights into the GDE in smaller, less contaminated regions

Back-up

The model applied to the new dataset [WCDA+KM2A]

Caveat: no evaluation of the unresolved sources possible yet: need to be tuned to lower energy

Vecchiotti++in prep.

Menchiari++in prep.

SCs + SNRs in clusters

