TeV-PeV gamma-ray emissions from Galactic Stellar-mass Black Holes

Shigeo S. Kimura **Tohoku University**

References SSK, Sudoh, Kashiyama, Kawanaka, 2021, ApJ, 915, 31 SSK, Kashiyama, Hotokezaka, 2021, ApJL, 922, L15 Kuze, SSK, Fang, 2025, ApJ submitted (arXiv:2501.17467) SSK, Tomida, Kobayashi, Kin, Zhang, 2025, ApJL, 981, L36

2nd LHAASO Symposium

ΟΗΟΚυ

UNIVERSITY

2025/03/20 - 2025/03/25

Index

- Galactic PeVatrons & black hole accretion flows
- Galactic black holes as PeVatron candidates - X-ray binaries
 - Isolated black holes
- Summary

SNR as origin of PeV cosmic rays?

- γ-rays from majority of SNRs have break or cutoff around 1 10 TeV
- Some SNRs are identified as PeVatrons
- But many have soft spectra at $E_{\gamma} \sim 100 \, {\rm TeV}$
- It is unclear whether SNR can provide sufficient PeV CRs observed at Earth
- Are there other PeVatrons in our Galaxy?

Stellar-mass Black Holes as PeVatrons

RIAFs around Black Holes

• Accretion rate is high ($\dot{M}c^2\gtrsim 0.01L_{\rm Edd}$) —> optically thick accretion disk + corona • Accretion rate is low ($\dot{M}c^2 \lesssim 0.01 L_{\rm Edd}$) —> only hot plasma surrounding the BH Coulomb timescale >> infall timescale —> non-thermal particle production?

MAD formation in low-accreting objects

- Low accretion rate e.g. Esin et al. 1997 \rightarrow Radiatively inefficient accretion flow (RIAF)
- Comparison of infall and cooling timescales \rightarrow truncation radius R_{trn} $\sim 10^4$ R_g
- Disk winds from RIAF e.g. Ohsuga et al. 2011
 - \rightarrow Large scale B-field with $\beta_p \sim 10^3 10^4$ e.g., SSK+ 2019 MNRAS
 - Rapid advection in RIAF e.g. Cao 2011 → carry global B-field to inner region Blandford+ 1999
 - Flux freezing + ADIOS: $\beta_p \propto R^{-1.5} R^{-2}$

 $\rightarrow \beta < 1 @ R \leq 10 R_g$

→ Formation of Magnetically Arrested Disk

(MAD)

Particle Acceleration by Reconnection & Turbulence

Reconnection & Turbulence in magnetized plasma lead to power-law distribution

MADs in Various Environments

• X-ray binaries

SSK, Sudoh, Kashiyama, Kawanaka 2021 Kuze, SSK, Fang 2025 (ApJ submitted)

Isolated Black Holes

10

SSK, Tomida, Kobayashi, Kin, Zhang 2025 SSK, Kashiyama, Hotokezaka 2021

MADs in Various Environments

• X-ray binaries

SSK, Sudoh, Kashiyama, Kawanaka 2021 Kuze, SSK, Fang 2025 (ApJ submitted)

Isolated Black Holes

©Shigeo S. Kimura

SSK, Tomida, Kobayashi, Kin, Zhang 2025 SSK, Kashiyama, Hotokezaka 2021

UHE y-rays from X-ray binaries

- 5 X-ray binaries: SS433, V4641 Sgr, G1915+105, Cyg X–1, MAXI J1820+070
- SS433, V4641 Sgr, G1915+105: extended morphology => Extended jets? CRs escaping from the center?
- Cyg X-1 & MAXI J1820+070: point source-like morphology => Compact jets? **Accretion flows?**

LHAASO 2024

MAD model

SSK & Toma 2020; Kuze, SSK+ 2022 SSK, Sudoh, Kashiyama, Kawanaka 2021 SSK, Kashiyama, Hotokezaka 2021

- Steady-state & one-zone approximation
- Proton-electron plasma
- Thermal & non-thermal components
- Transport equation for non-thermal components:

$$\frac{d}{dE_i} \left(\frac{E_i N_{E_i}}{t_{\text{cool}}} \right) = \dot{N}_{E_i, \text{inj}} - \frac{N_{E_i}}{t_{\text{esc}}},$$

- Reconnection/turbulence produce power-law distribution: $\dot{N}_{E_i,\text{inj}} \approx \dot{N}_0 (E_i/E_{i,\text{cut}})^{-s_{\text{inj}}} \exp(-E_i/E_{i,\text{cut}})$
- Normalization for non-thermal electrons $E_i \dot{N}_{E_i,\text{inj}} dE_i = f_i \epsilon_{\text{NT}} \dot{M} c^2$
- Synchrotron dominates over the other cooling processes

MAD BH Magnetosphere

Photon spectra from MADs in X-ray Binaries

Cosmic-Rays from MADs

- Maximum energy: E ~ 1 PeV (balance of escape & acceleration)
- Model prediction consistent with data within their uncertainties
- Model uncertainty mainly from number of X-ray binaries
- Future X-ray surveys will reduce model uncertainty

X-ray & y-ray data

• Our model can reproduce **Application to Cyg X-1** broadband features Kuze, SSK, Fang 2025 Cygnus X-1 Total Jet SSC MAGIC UL γγ pairs Thermal electrons Intrinsic X-ray π^0 decay Star LHAASO Proton synchrotron HAWC UL Jet Sync $\dot{m} = \dot{M}c^2 / L_{\rm Edd} = 10^{-1}$ Bethe-Heitler pairs $s_{\text{inj,MAD}} = 1.21$ Thermal electrons $\dot{M}c^2/L_{\rm Edd} = 10^{-1}$ -8 Companion $B_{\rm mad} = 1.2 \times 10^7 {\rm G}$ $E_{p,\text{max}} = 1.6 \times 10^5 \text{ GeV}$ $s_{\rm inj,MAD} = 1.21$ -9 Bethe-Heitler pairs $\frac{c_{ygnus X_{-1}}}{c_{NT}} = 0.003$ γγ pairs Total Thermal electrons - π^0 decay $f_{\rho} = 0$ Jet Sync Proton synchrotron Jet Sync Bethe-Heitler pairs Jet SSC 電波-赤外 可視+UV **X**線 GeV -9 -10 σ $\log(E_{\gamma}F_{E_{\gamma}})$ -5 -3 -2 $\begin{array}{ccc} 4 & 5 & 6 \\ \log(E_{\gamma}) [\text{eV}] \end{array}$ 3 6 -4 非熱的電· SSC(Jet) Jeť -13

MADs in Various Environments

• X-ray binaries

SSK, Sudoh, Kashiyama, Kawanaka 2021 Kuze, SSK, Fang 2025 (ApJ submitted)

Isolated Black Holes

19

SSK, Tomida, Kobayashi, Kin, Zhang 2025 SSK, Kashiyama, Hotokezaka 2021

New class of UHE v-ray sources?

- LHAASO discovere without detecting
- These objects are
- What is the origin

			рΤ
	<u>ch</u>		eV
			es
			ce

Source name Componen 1LHAASO J0007+5659u KM2A WCDA WCDA 1LHAASO J0206+4302u KM2A WCDA WCDA 1LHAASO J0212+4254u KM2A WCDA WCDA 1LHAASO J0212+4254u KM2A WCDA WCDA 1LHAASO J0216+4237u KM2A WCDA 34.10				
1LHAASO J0007+5659u KM2A WCDA WCDA 1LHAASO J0206+4302u KM2A WCDA WCDA 1LHAASO J0212+4254u KM2A WCDA WCDA 1LHAASO J0216+4237u KM2A WCDA 34.10 42.63 0.10 WCDA WCDA	Source name	Componer		
WCDA WCDA 1LHAASO J0206+4302u KM2A WCDA WCDA 1LHAASO J0212+4254u KM2A WCDA WCDA 1LHAASO J0216+4237u KM2A WCDA 34.10 42.63 0.10 WCDA	1LHAASO J0007+5659u	KM2A		
1LHAASO J0206+4302u KM2A WCDA 1LHAASO J0212+4254u KM2A WCDA 1LHAASO J0216+4237u KM2A 34.10 42.63 0.10 WCDA		WCDA		
WCDA 1LHAASO J0212+4254u KM2A WCDA 1LHAASO J0216+4237u KM2A 34.10 42.63 0.10 WCDA	1LHAASO J0206+4302u	KM2A		
1LHAASO J0212+4254u KM2A WCDA WCDA 1LHAASO J0216+4237u KM2A 34.10 42.63 0.10 WCDA WCDA WCDA 0.10		WCDA		
WCDA WCDA 1LHAASO J0216+4237u KM2A 34.10 42.63 0.10 WCDA WCDA WCDA WCDA WCDA	1LHAASO J0212+4254u	KM2A		
1LHAASO J0216+4237u KM2A 34.10 42.63 0.10 WCDA		WCDA		
WCDA	1LHAASO J0216+4237u	KM2A	$34.10 \ \ 42.63$	0.10
		WCDA		

Isolated Black Holes (IBHs)

- 0.1% of stars form BHs: $N_{\rm BH} \sim f_{\rm BH} N_{\rm star} \sim 3 \times 10^8$ —> many IBHs wandering interstellar medium
- IBHs accretes ISM gas by Bondi–Hoyle–Littleton rate

$$\dot{M}_{\bullet} \approx \lambda_w \frac{4\pi G^2 M^2 \mu_{\rm ISM} m_p n_{\rm ISM}}{(C_s^2 + v_k^2)^{3/2}}$$

- Accretion onto IBHs depends on ISM phase
- warm medium: $\dot{M}c^2 \sim 10^{32}$ erg/s $n_{ISM,-1}v_{k,40$ km/s
- molecular clouds $\dot{M}c^2 \sim 10^{35} \text{ erg/s } n_{ISM,2}v_{k,40 \text{ km/s}}$
- Parameters are similar to X-ray binaries -> IBHs as PeVatrons?

(Fujita+ 1998; Ioka+2017; Matsumoto+2018; Tsuna+ 2018,2019 etc)

Schematic picture of our scenario

- We cannot detect γ-rays with LHAASO
- We cannot expect neutrino detection even with future detectors

- Our scenario can explain LHAASO data
- Future detectors may be able to detect neutrinos from "dark" sources

IBHs in Molecular Clouds as PeVatrons

- $\sim 10^8$ IBHs in our galaxy
- $\sim 10^5$ IBHs in molecular clouds
- IBHs in molecular clouds can accelerate CRs up to PeV
- Protons accelerated in MADs will escape to ISM
- They can be source of PeV CRs


```
S
cm<sup>-2</sup>
       -2
<u>н</u>
  S
 [GeV
E^2\Phi)
  )
DO
```

SSK, Tomida, Kobayashi, Kin, Zhang 2025

Future test of our scenario: identification of IBH

SSK, Kashiyama, Hotokezaka 2021

- Photon spectra from IBHs: bright in optical & X-rays
- X-ray by eROSITA & Optical by Gaia satellites => possibly able to identify IBHs using the data
- Our proposals for IBH search are accepted by Seimei telescope Please stay tuned

Summary

- Calibrating parameters using optical/X-ray data from quiescent BH X-ray binaries, MADs in X-ray binaries can explain UHE gamma-rays from Cyg X-1 & MAXI J1820+070
- Isolated black holes embedded in molecular clouds can be PeVatrons
 - γ-rays from molecular clouds might be potential origin of "dark" LHAASO sources
 - Optical & X-ray observations will provide good tests on our scenario

Magnetic reconnection & turbulence in MADs can efficiently accelerate non-thermal particles

- SSK, Tomida, Kobayashi, Kin, Zhang 2025
 - J0007+5659u

Thank you your attention

for

