PULSAR WIND NEBULAE: HALOES, JETS AND THE PROBLEM OF PARTICLE ESCAPE.

NICCOLO' BUCCIANTINI INAF ARCETRI - UNIV. FIRENZE - INFN

AF - OSSERVATORIO ASTROFISICO DI ARCETRI

AVVISO / CODICE E TITOLO PROGETTO

Missione / Componente / Investimento

PWNE

PWNE ARE HOT BUBBLES OF RELATIVISTIC PARTICLES AND MAGNETIC FIELD EMITTING NON-THERMAL RADIATION.

ORIGINATED BY THE INTERACTION OF THE ULTRA-Relativistic magnetised pulsar wind with the Expanding SNR (or with the ISM)

GALACTIC ACCELERATORS. THE ONLY PLACE WHERE WE CAN STUDY THE PROPERTIES OF RELATIVISTIC SHOCKS (AS IN GRBS AND AGNS)

NATURAL LEPTONIC PEVATRONS, MOST EFFICIENT ANTIMATTER FACTORIES IN THE UNIVERSE

DEATH OF A MASSIVE STAR – THE BIRTH OF PULSAR

STARS MORE MASSIVE THAN 8 M_{SUN} END THEIR LIFE IN SUPERNOVA EXPLOSION

STARS LESS MASSIVE THAN 25-30 M_{SUN} LEAVE **BEHIND A COMPACT STELLAR REMNANT IN THE** FORM OF A NEUTRON STAR

THE COMBINATION OF STRONG MAGNETIC FIELD (10¹²G) AND RAPID **ROTATION (P=0.001-1S) CREATES STRONG ELECTRIC FIELD AT THE** SURFACE EXTRACTING PAIRS AND PRODUCING PAIR CASCADES. **OBSERVED AS PULSARS**

CRAB SYNCHROTRON SPECTRUM

The most efficient non-thermal accelerator.

IC GAMMA SPECTRUM

IC GAMMA SPECTRUM

FINE STRUCTURES – A LAB FOR RELTIVISTICN FLUID DYNAMICS

RELATIVISTIC MHD MODELS

THE WIND ANISOTROPY SHAPES THE TS STRUCTURE. DOWNSTREAM FLOW – EQUATORIAL COLLIMATION DUE TO THE TS SHAPE: A: ULTRARELATIVISTIC PULSAR WIND B: SUBSONIC EQUATORIAL OUTFLOW C: SUPERSONIC EQUATORIAL FUNNEL D: SUPER-FASTMAGNETOSONIC FLOW A: TERMINATION SHOCK FRONT B: RIM SHOCK C: FASTMAGNETOSONIC SURFACE

REPRODUCING OBSERVATIONS

MAIN TORUS INNER RING (WISPS STRUCTURE) KNOT BACK SIDE OF THE INNER RING

EACH FEATURE TRACES AN EMITTING REGION

REPRODUCING OBSERVATIONS

REPRODUCING OBSERVATIONS

THE COMPLEXITY OF GOING 3D – STATE OF THE ART COMPUTATIONS

THE COMPLEXITY OF GOING 3D – STATE OF THE ART COMPUTATIONS

FERMI VS RECONNECTION

FERMI DSA HIGHLY INEFFICIENT IN PSR WIND SHOCK – VERY LOW MAGNETISATION

SPECTRAL EVOLUTION

SPECTRAL EVOLUTION

CUTOFF ENERGY IS HIGHER AT PEAK

SPECTRAL EVOLUTION

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

TEARING INSTAB

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

TEARING INSTAB

IXPE - X-RAY POLARIMETRY - VELA

Fei et al 2023

	- 2^b	-1 ^b	0^{b}	1^{b}	2^{b}	
na	$37{\pm}18$	27 ± 13	$61{\pm}12$	37 ± 13	47 ± 15	PD ^c
4	$-14{\pm}14$	$-21{\pm}14$	-41.7 ± 5.3	$-52{\pm}10$	$-53.8{\pm}8.9$	$\mathbf{P}\mathbf{A}^d$
1^{a}	$33{\pm}10$	$48.5 {\pm} 5.0$	53.5 ± 4.1	56.8 ± 7.1	$47{\pm}13$	PD ^c
-	$6.3 {\pm} 9.0$	$-22.4{\pm}3.0$	-42.2 ± 2.2	-50.2 ± 3.6	-58.2 ± 7.7	PA^d
na	$10.3 {\pm} 8.8$	$34.4{\pm}3.9$	$49.0{\pm}2.5$	$62.8{\pm}4.0$	$44{\pm}11$	PD^{c}
0	$-7.4{\pm}24$	-34.3 ± 3.3	$-50.3{\pm}1.5$	$-53.9{\pm}1.9$	-50.5 ± 7.4	$\mathbf{P}\mathbf{A}^d$
10	$21{\pm}12$	27.5 ± 7.2	$38.5{\pm}4.0$	57.1 ± 5.4	$44{\pm}12$	PD^{c}
$\cdot 1^a$	$-47{\pm}17$	-68.3 ± 7.5	$-70.0{\pm}3.0$	$-69.8{\pm}2.7$	-57.3 ± 7.9	$\mathbf{P}\mathbf{A}^d$
•	$34{\pm}15$	$4.5^{+13}_{-4.5}$	$34.9{\pm}9.5$	43 ± 12	17 ± 14	PD^{c}
2"	$-51{\pm}13$	-6.0 ± 85	$86.1{\pm}7.8$	$-84.2{\pm}7.6$	$-70{\pm}23$	$\mathbf{P}\mathbf{A}^d$

Very high PF suggest no turbulence in the PWNe

Unlikely reconnection to play a major role in accelerating particles

Old sytems should be more turbulent.

POTENTIAL LIMITED ACCELERATION

$$mc^2\gamma_{max} = e\sqrt{\frac{L}{c}} = e\Phi_{psr}$$

POTENTIAL LIMITED ACCELERATION

$$mc^2\gamma_{max} = e\sqrt{\frac{L}{c}} = e\Phi_{psr}$$

ACCELERATION LIMIT AT THE TS

MAGNETISATION IN THE CRAB IS JUST BELOW EQUIPARTITION B \sim 150–120 UG

$$\frac{L}{4\pi c R_{ts}^2} = \frac{1}{2} \frac{3Lt}{4\pi R_n^3}$$
$$\frac{L}{4\pi c R_{ts}^2} = P_{neb} = \frac{1}{\sigma} \frac{B_{ts}^2}{8\pi}$$
$$R_{ts} = \frac{1}{B_{ts}} \sqrt{\frac{\sigma L}{c}}$$

 $\frac{eB_{ts}}{mc^2\gamma_{max}} = R_L = R_{ts}$

$$\frac{mc^2\gamma_{max}}{eB_{ts}} = R_L = R_{ts}$$

$$\frac{E_{max}}{eB_{ts}} = e\sqrt{\frac{\sigma L}{c}} = e\Phi_{psr}\sqrt{\sigma}$$

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB} \qquad \tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma} \qquad \gamma_{max} \simeq 10^8 \frac{1}{\sqrt{E}}$$

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB} \qquad \tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma} \qquad \gamma_{max} \simeq 10^8 - \frac{1}{2}\sqrt{10}$$

MAXIMUM FREQUENCY IS FIXED

 $\nu_{syn,max} \simeq 150 MeV$

 \overline{B}

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB}$$
 $\tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma}$ $\gamma_{max} \simeq 10^7$

MAXIMUM FREQUENCY IS FIXED

 $\nu_{syn,max} \simeq 150 MeV$

IN CRAB THE LIMITS ALL Coincide

OTHERS ALL POTENTIAL LIMITED

12 INITIAL SOURCES DETECTED BY LHAASO ABOVE 100 TEV

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×o)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26-0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27±0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

35 OUT 43 >100 TEV SOURCES HAVE A PSR/PWN ASSOCIATED

PEV PROTONS OR ELECTRONS?

THERE ARE NO-COUNTERPART SOURCES

PSR VOLTAGE

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LIKELY LOSS LIMITED

$$t_{acc} = \frac{E}{e\xi_e Bc} < t_{loss} = \frac{6\pi (mc^2)^2}{\sigma_T c B^2 E}$$

$$E_{max} \approx 6 \ PeV \ \xi_e^{1/2} \ B_{-4}^{-1/2}$$

TIME EVOLUTION I

Kolb et al 2017

Blondin et al 2001

Ma et al 2016

TIME EVOLUTION I

19

OLDER SYSTEMS SHOW A DISPLACEMENT OF THE TEV GAMMA EMISSION FROM THE PULSAR: REVERBERATION, BOW-SHOCK

PWNE WILL BE THE MOST NUMEROUS GALACTIC GAMMA-RAY SOURCES

DISTRIBUTION IN THE GALAXY

PWN IN THE GALAXY MODELLED WITH NUMERICAL SIMULATIONS + RADIATIVE CODE

PWN ARE PRIMARY TARGETS FOR CTA AND ASTRI MA

CONTRIBUTION AT GAMMA-RAYS

BOW SHOCK PWNE

MOST PULSARS KICK VELOCITY IS SUPERSONIC IN ISM

FORWARD SHOCK VISIBLE IN HA PWN VISIBLE AS A RADIO AND X-RAYS TAIL

PAIR ESCAPE

The are BS PWNe where the X-ray "tail" is where it should not be!

The particles in these features are ~ PSR voltage

Guitar (Wong et al 2003) Cuitar Nebula

TeV halo suggest strong diffusion

BOW-TAILS IN X-RAY

Kargaltsev & Pavlov 2008

De Vries et al 2022

Region	Counts	Γ	$f_{-15}{}^{\rm b}$	$\chi^2/{ m DoF}$	B_{eq}
					$[\mu G]$
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9

^a $\overline{N_H}$ fixed at $2.7 \times 10^{21} \text{cm}^{-2}$. ^b 0.5 - 7 keV unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.

De Vries et al 2022

2021 2012

NO EVIDENCE OF COOLING IN THE INNER REGION

Region	Counts	Γ	$f_{-15}{}^{\rm b}$	$\chi^2/{ m DoF}$	B_{eq}
					$[\mu G]$
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9

^a $\overline{N_H}$ fixed at $2.7 \times 10^{21} \text{cm}^{-2}$. ^b 0.5 - 7 keV unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.

De Vries et al 2022

22 YEARS OF GUITAR

NO EVIDENCE OF COOLING IN THE INNER REGION

SOME COOLING IN THE OUTER REGION ?

Region	Counts	Г	$f_{-15}{}^{\rm b}$	$\chi^2/{ m DoF}$	B_{eq}
					$[\mu G]$
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9

^a $\overline{N_H}$ fixed at $2.7 \times 10^{21} \text{ cm}^{-2}$.

^b 0.5 - 7 keV unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.

De Vries et al 2022

22 YEARS OF GUITAR

NO EVIDENCE OF COOLING IN THE INNER REGION

SOME COOLING IN THE OUTER REGION ?

MUCH STEEPER SPECTRUM IN THE COUNTER JET

Region	Counts	Г	$f_{-15}{}^{\rm b}$	$\chi^2/{ m DoF}$	B_{eq}
					$[\mu G]$
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9

^a N_H fixed at $2.7 \times 10^{21} \text{cm}^{-2}$.

^b 0.5 - 7 keV unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.

De Vries et al 2022

22 YEARS OF GUITAR

NO EVIDENCE OF COOLING IN THE INNER REGION

SOME COOLING IN THE OUTER REGION ?

MUCH STEEPER SPECTRUM IN THE COUNTER JET

COOLING IN THE TRAILING

Region	Counts	Г	$f_{-15}{}^{\rm b}$	$\chi^2/{ m DoF}$	B_{eq}
					$[\mu G]$
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9

^a N_H fixed at $2.7 \times 10^{21} \text{cm}^{-2}$.

^b $0.5 - 7 \,\text{keV}$ unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.

De Vries et al 2022

NO EVIDENCE OF COOLING IN THE

SOME COOLING IN THE OUTER

MUCH STEEPER SPECTRUM IN THE

COOLING IN THE TRAILING

2 15

Region	Counts	Γ'	f_{-15}	χ^2/DoF	B_{eq}				
					$[\mu G]$	_			
Inner	214 ± 17	1.31 ± 0.16	9.9	29.3/27	13				
Middle	209 ± 17	1.37 ± 0.17	10.2	24.3/24	14				
Outer	489 ± 32	1.58 ± 0.15	24.1	53.2/48	8				
CF	86 ± 11	1.71 ± 0.30	3.5	23.8/24	17				
Leading	273 ± 19	1.39 ± 0.14	13.6	22.7/33	19				
Trailing	154 ± 16	1.60 ± 0.20	7.1	30.5/30	17				
Remnant	174 ± 19	1.40 ± 0.27	7.2	38.0/33	9				
^a N_H fixed at $2.7 \times 10^{21} \text{ cm}^{-2}$.									
^b $0.5 - 7 \mathrm{keV}$	^b $0.5 - 7 \text{ keV}$ unabsorbed fluxes in units of $10^{-15} \text{erg cm}^{-2} \text{s}^{-1}$.								

BOW SHOCK PWNE: THEORY VS REALITY

BOW SHOCK PWNE: INTERNAL TURBULENCE

Isotropic Wind

Anisotropic Wind

BOW SHOCK PWNE: INTERNAL TURBULENCE

Isotropic Wind

Anisotropic Wind

Olmi & Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE

> STRONG ENERGY DEPENDENCE

TURBULENCE IN THE TAIL DEPENDENT ON INTERACTION GEOMETRY

Olmi & Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE

STRONG ENERGY DEPENDENCE

TURBULENCE IN THE TAIL DEPENDENT ON INTERACTION GEOMETRY

Olmi & Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE

STRONG ENERGY DEPENDENCE

TURBULENCE IN THE TAIL DEPENDENT ON INTERACTION GEOMETRY

BOW-SHOCK E_{MAX} \sim 0.1 PSR VOLTAGE

BOW-SHOCK E_{MAX} \sim 0.1 PSR VOLTAGE

ESCAPE FROM THE HEAD 0.1 – 1.0 E_{max}

ALMOST MONOCHROMATIC PARTICLE INJECTION LOW EFFICIENCY

BOW-SHOCK E_{MAX} \sim 0.1 PSR VOLTAGE

ESCAPE FROM THE HEAD 0.1 – 1.0 E_{max}

ALMOST MONOCHROMATIC PARTICLE INJECTION LOW EFFICIENCY

CURRENT CANONICAL PICTURE WELL ESTABLISHED

CURRENT CANONICAL PICTURE WELL ESTABLISHED

PWNE WILL BE MAIN SOURCE OF GAMMA RAY SKY

LIKELY TO DOMINATE THE PEVATRONS

PSR/PWN PROBABLY THE MAIN ANTIMATTER FACTORIES

CURRENT CANONICAL PICTURE WELL ESTABLISHED

PWNE WILL BE MAIN SOURCE OF GAMMA RAY SKY

LIKELY TO DOMINATE THE PEVATRONS

PSR/PWN PROBABLY THE MAIN ANTIMATTER FACTORIES

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED DIVERSITY

CURRENT CANONICAL PICTURE WELL ESTABLISHED

PWNE WILL BE MAIN SOURCE OF GAMMA RAY SKY

LIKELY TO DOMINATE THE PEVATRONS

PSR/PWN PROBABLY THE MAIN ANTIMATTER FACTORIES

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED DIVERSITY

OLD SYSTEMS ARE POORLY CONSTRAINED

BOW SHOCK PWNE LIKELY GOOD INJECTOR OF PAIRS

CURRENT CANONICAL PICTURE WELL ESTABLISHED

PWNE WILL BE MAIN SOURCE OF GAMMA RAY SKY

LIKELY TO DOMINATE THE PEVATRONS

PSR/PWN PROBABLY THE MAIN ANTIMATTER FACTORIES

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED DIVERSITY

OLD SYSTEMS ARE POORLY CONSTRAINED

BOW SHOCK PWNE LIKELY GOOD INJECTOR OF PAIRS

ESCAPE FROM OLDER BUT CONFINED SYSTEMS IS UNLIKELY

JET FEATURES DEPEND ON BOW SHOCK HEAD CONDITIONS

NON UNIFORM BOW SHOCK TAIL DYNAMICS