#### The Origin and Acceleration of Very- and Ultra-High-Energy Cosmic Rays

Jieshuang Wang Max Planck Institute for Plasma Physics (IPP)



PLASMA

ASTRO

Centaurus A, credit: NASA/CXC

The 2nd LHAASO symposium, March 20th-25th, Chinese University of Hong Kong MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK





#### AGN as UHECR candidates

- Active galactic nuclei (AGN) are known for accelerating particles 90 AGNs (84 blazars, 4 radio galaxies) in TeV catalog
- - Candidate of ultra-high-energy cosmic rays (UHECRs)



LASM ASTRO





#### Ultra-high-energy cosmic ray (UHECR)





Significant dipole anisotropy >8 EeV (1e18eV) (significance  $>5\sigma$ ), Cen A as candidate source for dominant contribution

Hotspot at >60EeV points to radio galaxies (significance ~4 $\sigma$ ), especially Cen A region









#### Centaurus A

- The unique UHECR source candidate: most nearby radio galaxy at D ~ 4Mpc (1' = 1 kpc) and most powerful source in the nearby Universe
- Radio galaxies: diffuse emission along the jet



Hardcastle+, 2003, ApJ



H. E. S. S. Collaboration, 2020, Nature



## X-ray: Synchrotron origin

- Synchrotron X-rays requires efficient electron acceleration
- Efficient acceleration for electrons to sub-PeV (PeV =  $10^{15}$ eV):  $E_{syn} = 2(E_e/0.1 \text{PeV})^2(B/10\mu\text{G}) \text{ keV}$
- ► Cooling time of sub-PeV electrons:  $\tau_c = 10^3 (B/10\mu G)^{-2} (E_e/0.1 \text{PeV})^{-1} \text{ yrs}$ → maximum  $c\tau_c = 0.37 \text{ kpc}$
- For X-ray jet length > kpc, particles are efficiently and continuously accelerated along jet









#### Multi messengers and kpc-scale jets

#### Is there *a framework* which can explain both the MWL and UHECR observations?



H. E. S. S. Collaboration, 2020, Nature



Observed Excess Map - E > 60 EeV





#### Continuous particle acceleration

- Continuous particle acceleration offers a natural explanation to diffuse emission
- In turbulent jet flows, continuous acceleration by Fermi II mechanism and shear acceleration
- Shock and magnetic reconnection can produce more localized features (e.g. knots, hotspots) and add to the turbulence development and particle injection







#### Explanation for MWL spectra

 Solving the Fokker–Planck equation to obtain the particle spectrum: dependence on radial velocity profile

$$n(\gamma) \propto \gamma^{s} F_{-}(\gamma, q) + C\gamma^{s} F_{+}(\gamma, q)$$

$$s_{\pm} = \frac{q-1}{2} \pm \sqrt{\frac{(5-q)^{2}}{4} + w}$$

$$w = \frac{10c^{2}}{\Gamma^{4}(r)R^{2}} \left(\frac{\partial u(r)}{\partial r}\right)^{-2}$$

Analytical modeling to obtain B and u

$$E = \gamma m c^2 \qquad \frac{\partial n(\gamma, t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial \gamma} \left[ \left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] - \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] - \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] - \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] - \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma} \left[ \left( \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] \right] + \frac{\partial}{\partial \gamma$$





Wang+, 2021, MNRAS, arXiv:2105.08600



# Numerical simulations of acceleration of UHECRs





## **RMHD Simulations**

- Stochastic-shear acceleration depends on turbulence and velocity profile
- Periodic box simulations to study the jet instabilities (e.g. Kelvin-Helmholtz)
- Parameters derived from analytical MWL modeling



Wang+, 2023, MNRAS









### Radial profiles and turbulence

- Turbulence (HD/MHD) is close to Kolmogorov





Velocity shearing profile self-generated through Kelvin-Helmholtz instability



#### Particle trajectories and shear acceleration





12



#### Particle spectra

### • Particles efficiently accelerated close to the maximum theoretical limit: $E_{\text{peak}} \gtrsim 0.1 \ E_{\text{max}}$ for different types of jets with different velocity and B







## "A" jet origin of UHECR







## Jets of AGN and microquasars

#### Cygnus A: powerful AGN jet





SS 433: microquasar jet





#### Super Accretor: Super Accelerator

Microquasar jet as PeV-EeV Galactic CR sources?





unit) (arbitrary đ  $(E^2 dN/dE)$ 

#### **Sources of Highest-Energy Galactic CR?**



Wang, Reville, Aharonian, 2025, submitted



#### XRB with super-Eddington flares: $E_{\text{max}} = Ze\beta BR = 1 Z\beta^{1/2}\sigma^{1/2}L_{K41}^{1/2}$ EeV



### Summary

- UHECR acceleration (e.g. Cen A) can be explained
  - mechanism in relativistic jets
- Jets as CR sources: Galactic jets  $\rightarrow$  VHECRs, Extra-galactic jets  $\rightarrow$  UHECRs?



Matter: super solar abundance by AGN activity



In the framework of stochastic-shear acceleration, both MWL observation and

Turbulent-shear acceleration is an unavoidable (KH instability) and efficient







Backup



#### M87 application







