First observation of an UHE neutrino event with KM3NeT

Silvia Celli on behalf of the KM3NeT Collaboration

silvia.celli@roma1.infn.it

Sapienza Università di Roma, Italy INFN - Sezione di Roma, Italy

2nd LHAASO Symposium - March 24th 2025

Outline of the talk:

- The KM3NeT infrastructure
- KM3NeT/ARCA observation
 of KM3-230213A
- Possible origin
- Conclusions

KM3NeT at a glance

Main detector elements:

- **Digital Optical Modules (DOMs)**
- **Detection Units (DUs)**
- Seafloor network: Junction Boxes (JBs) and electro-optical cables

KM3Ne¹

KM3NeT: a top view

ARCA (1 GTon)

Astroparticle Research with Cosmics in the Abyss

3500 m depth, offshore Sicily

ORCA (6 MTon)

Oscillation Research with Cosmics in the Abyss

2500 m depth, offshore Toulon

Neutrino detection principle & event topologies

- Track like events golden astronomical channel
- Shower like events → calorimetric → diffuse analyses

KM3-230213A: features

- Trigger time: Feb 13th 2023, 01:16:47 UTC
- ARCA21 configuration (21 DUs, ~0.2 km³), 335 days of livetime
- Bright track selection (length > 250 m, N^{trigPMT} > 1500, logL > 500)
- KM3-230213A: nearly horizontal event (0.6° above horizon), RA=94.3°, DEC=-7.8° (I=216.1°, b=-11.1°)
- Containment radii: R(68%)=1.5°, R(90%)=2.2°, R(99%)=3.0°

A very well reconstructed muon track

Time residual distributions on different DUs

KM3-230213A: direction

Hit arrival time (ns)

Hit times fully consistent with Cherenkov photons

- From reconstruction algorithms, a muon track and three showers detected, as expected in muon stochastic energy losses
- The collinearity of showers supports the single muon hypothesis

Not an atmospheric muon

Passes through continental shelf/Malta Actual amount of crossed matter is even larger...

KM3-230213A: energy

- Energy is measured from the amount of light:
- The parent neutrino energy is estimated to be (E⁻² source flux):

$$E_{\mu} = 120^{+110}_{-60} \text{ PeV}$$

 $E_{\nu} = 220^{+570}_{-100} \text{ PeV}$

KM3-230213A

- Assuming reconstructed energy and direction
 - Expected atmospheric muon contamination @ 100 (10) PeV: <</pre> << 10⁻¹⁰ (10⁻⁹) event/year within 2σ of reconstructed direction << 10⁻⁴ event/year within 5σ of reconstructed direction
 Expected rate of atmospheric neutrinos >100 PeV: << (1-5) x 10⁻⁵ event/year

The most energetic neutrino ever probed

A global fit to existing data

 Non-observations by IceCube & Auger place stringent constraints on the neutrino flux associated with KM3-230213A

A global fit to existing data

Accounting for IceCube & Auger non-observations we could estimate

$$E^2 \phi_{\nu} = 5.7 \times 10^{-10} \,\mathrm{GeV cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$$

Cosmic or cosmogenic?

COSMIC = in situ production at an extreme astrophysical accelerator

COSMOGENIC = resulting from UHECR interaction with background radiation fields permeating the Universe

$$p + \gamma \longrightarrow p + \pi^0, n + \pi^+$$

 $(A, Z) + \gamma \longrightarrow (A - 1, Z) + N$

Testing the cosmic origin

• Out of the Galactic Plane, in the Orion molecular cloud region

 Neutrino counterparts searched for in ANTARES, KM3NeT/ORCA & IceCube datasets

	Dataset			Radius
Detector	Covered Period	Livetime	Type of Data	
	dd/mm/yyyy	[days]		[deg]
ARCA6-21ª	12/05/2021 - 11/09/2023	640	offline ^b	3
ORCA6-18	11/02/2020 - 31/08/2023	1005	offline	4
ORCA18-23	01/09/2023 - 29/07/2024	126	online ^c	4
ANTARES	29/01/2007 - 31/12/2017	3125	public ^d	3
IceCube	06/04/2008 - 08/07/2018	3577	public [93]	3

KM3NeT Coll., Nature 638 (2025) 8050

Upper limit on potential point-like source flux set to:

$$(E^2 \phi_{\nu})^{90\% CL} \leq 1.2 \times 10^{-9} \,\text{GeVcm}^{-2} \text{s}^{-1}$$

Hardly of Galactic nature

Potential nearby accelerators searched among:

- SNRs (GreenCat)
- Young star clusters (Gaia DR2)
- X-ray binaries and microquasars (eRosita)
- Pulsars and PWNe (ATNF)
- Gamma-ray catalogs (4FGL, 3HWC, 1LHAASO)

KM3NeT Coll., arXiv:2502.08387

No plausible counterparts found

Testing the extra-galactic origin

- Electromagnetic counterparts searched in a 3° cone around the event direction
- Fermi 4FGL sources
- TeVCat and 3HWC data
- Optical transients (ZTF)
- GCN, TNS and AT transients

17 (2) blazars found in the 3σ
(1σ) uncertainty region of 3°
(1.5°) radius

• Blazars (radio VLBI/ALMA, infrared WISE/, optical ATLAS/CRTS/ZTF/ Gaia, X rays SWIFT/Chandra/ROSAT/SVOM, gamma rays Fermi)

Possible flaring blazar counterparts

Testing the cosmogenic origin

UHECR interaction length depends on their energy distribution and mass composition

On Earth fluxes also vary with cosmological source evolution:

21

Testing the cosmogenic origin

UHECR interaction length depends on their energy distribution and mass composition

On Earth fluxes also vary with cosmological source evolution:

A milestone in neutrino astronomy

- KM3-230213A is by far the most energetic neutrino measured so far
- It is the **first UHE neutrino detected**, opening the explorations of physics in a new energy region
- Several plausible scenarios might explain its nature
- More observations to come will clarify the origin of UHE neutrinos
- KM3NeT is taking data and growing rapidly

STAY TUNED FOR UPDATES!

