FROM ASTRI to CTA-SST: the ASTRI heritage in CTAO

Giorgia Sironi on behalf of the CTAO SST Consortium

The 2° LHAASO Simposium, 21 -25 March 2025, Henry Cheng International Conference Center, Hong Kong

Summary

- > ASTRI in the CTA framework
- > ASTRI heritage 1: telescopes
- > ASTRI heritage 2: mirrors
- ASTRI heritage 3: know-how
- Conclusions

The CTA framework

CTA – Cherenkov Telescope Array:

- more than 100 Imaging Air Cherenkov Telescopes
- 20 GeV-300 Tev (LST + MST +SST)
- implemented at two sites.

CTAO

CTA-Telescopes

CTA-configuration

Improved - Alpha configuration

CTA-configuration

Alpha configuration

We are opening the multi-TeV science to the Southern sky

Credits R .Zanin – CTAO Project Scientist

9

We are opening the multi-TeV science to the Southern sky

Timeline

PNRR

ISTITUT

PNRR to be completed within 2025

- 10 SST telescopes structures
- M1 mirrors for 10 SST
- M2 mirrors
- +2 LST full telescopes for the S-site

PNRR

- 10 SST telescopes structures
- M1 mirrors for 10 SST
- M2 mirrors
- +2 LST full telescopes for the S-site

Summary

- > ASTRI in the CTA framework
- > ASTRI heritage 1: telescopes
- ASTRI heritage 2: mirrors
- > ASTRI heritage 3: know-how
- Conclusions

CTA-SST selected in 2020

- ASTRI Optical Design
- Upgraded telescope structure
- Upgraded CHEC-S Camera

CTA-SST updates - The 2° LHAASO Simposium, 21 -24 March 2025, Hong Kong

To be verified at the South site environmental conditions

CTA-SST

- ASTRI Optical Design
- Upgraded telescope structure
- Upgraded CHEC-S Camera

	Small-sized telescope (SST) main properties:	
Optical Design	modified Schwarzschild-Couder	
Primary reflector diameter	4.3 m	
Secondary reflector diameter	1.8m	
Effective mirror area (including shadowing)	>5 m ²	
Focal length	2.15 m	
Total weight	<17.5 t	
Field of view	>8.8 deg	
Number of pixels in SST Camera	2048	
Pixel size (imaging) 0.16 deg		
Photodetector type	SiPM	
Telescope data rates (before array trigger)	>600 Hz	
Telescope data rates (readout of all pixels; before array trigger)	2.6 Gb/s	
Positioning time to any point in the sky (>30° elevation)	70s	
Telescope Post Processing Pointing Precision	< 7 arcsecs	

CTA-SST

ASTRI Optical Design

- Upgraded telescope structure
- Upgraded CHEC-S Camera

Advantage of the **ASTRI optical design**:

- > Aplanatic
- Flat off-axis angular resolution (D80<0.2 deg)</p>
- FOV extension to > 10 degrees

Final alignment check and D80 across the FOV for ATRI-Horn telescope

CTA-SST selected in 2020

- ASTRI Optical Design
- Upgraded telescope structure
- Upgraded CHEC-S Camera

CTA-SST selected in 2020

•

- ASTRI Optical Design
- Upgraded telescope structure
- Upgraded CHEC-S Camera
- SST-CAM Development based on 2 prototypes CHEC-M (MAPMs) CHEC-S (SiPMs)
- Low Cost, High Performance
 Fine pixelation, large FoV
 32 modules of 64 pixels each
 Tile on a radius of curvature of 1 m
 6 mm x 6 mm (~0.15°) pixels
 2048 SiPM pixels
 9° FoV
 Efficient trigger & full waveform readout
 - @1GSa/s for all pixels in every event Max readout rate: 1200 Hz

Continuous measurement of DC light

CTA-SST selected in 2020

- ASTRI Optical Design
- Upgraded telescope structure
- Upgraded CHEC-S Camera

- Development based on 2 prototypes CHEC-M (MAPMs) CHEC-S (SiPMs)
- Low Cost, High Performance Fine pixelation, large FoV 32 modules of 64 pixels each

Tile on a radius of curvature of 1 m 6 mm x 6 mm (~0.15°) pixels 2048 SiPM pixels

9° FoV

Efficient trigger & full waveform readout @1GSa/s for all pixels in every event Max readout rate: 1200 Hz

Continuous measurement of DC light

Mechanical CAM mounted on ASTRI-1 in Tenerife (November 2023)

CHEC-S on ASTRI Data

Summary

- > ASTRI in the CTA framework
- > ASTRI heritage 1: telescopes
- ASTRI heritage 2: mirrors
- > ASTRI heritage 3: know-how
- Conclusions

ASTRI heritage in CTA #2: Mirrors

ASTRI heritage in CTA #2: Mirrors

IACTs are large, uncovered, fast moving collectors

- Segmented optics
- High multiplicity
- Light weight

M1 mirrors produced by glass cold-slumping developed by INAF-OAB and Media Lario

CTA-SST M2 Mirrors manufacturing

M2 mirror substrates produced by glass hot-slumping:

Fig. 2 ASTRI M2 mould + flat glass sheet

Fig. 3 ASTRI M2 mould + slumped glass sheet

Fig. 4: ASTRI M2 with I/Fs to the telescope

M2 DIMENSIONS: Diam. 1800 mm, Concavity/Sag. ~200 mm RADIAL PROFILE: Aspherical shape, difference from sphere ~1 mm GLASS: Monolithic foil, Circular shape, Thickness 19 mm, good starting microroughness I/Fs: 12 stainless steel PADs glued on back

MOULD: Fe mould, negative shape of M2 for indirect slumping (~600°C, 17h cycle)

ASTRI heritage in CTA #2: Mirrors

0

IACTs are large, uncovered, fast moving collectors

Segmented optics

- High multiplicity
- Light weight

Test name	Description	
Visual Inspection	ISO 9211-4: 2006(E)	
R%	Average reflectivity in 300-550 nm measured with Spectrophotometer Filmetrics F20-UVX	
R% Uniformity	Range of R% measured on 13 points uniformly distributed along three diagonals	
Adhesion Test	ISO 9211-4: 2006(E), Method 02, Severity 01 (rate of tape removal: slow)	
Damp Heat	ISO 9022-2:2002(E), Method 12, Severity 03-1	
Thermal cycling	 Specific procedure agreed with INAF From 20°C to -20°C (0.125°C/min → Plateau of 12 hours) From -20°C to 70°C (0.125°C/min → Plateau of 4 hours) Cool down to 20°C 	
Abrasion	ISO 9211-4: 2006(E), Method 01, Severity 02	
Salt Mist	ISO 9022-4: 2002(E), Method 40, 24h (Severity according to ISO 9211-3:2008)	
Solar Radiation	 ISO 9022-9:2016 [RD6], Method 20, Severity 01-1, with the following conditions: Max temperature 70 ± 2 °C instead of 55 ± 2°C specified by ISO Total irradiance 1.2 ± 0.1 kW/m² instead of 1 ± 0.1 kW/m² specified by ISO 	
Aggressive env.	Panels exposed to open air (TBD) / Accelerated test method to be identified	
Sand and Dust	MIL-STD-810F_01Jan2000, Met 510.4, Procedure I (Blowing Dust) – Same as ALMA panels	

ASTRI-COR3 mirror during Damp Heat test

MST mirror in the climatic chamber during the thermal tests

Sample and Kapton tape show no anomalies after removal

ASTRI heritage in CTA #2: Mirrors

Summary

- > ASTRI in the CTA framework
- > ASTRI heritage 1: telescopes
- ASTRI heritage 2: mirrors
- ASTRI heritage 3: know-how
- Conclusions

ASTRI heritage in CTA #3: know-how

Structure is very stiff

Optical alignment performed by removable actuators + optical camera

Figure 6. The optical camera. Left: a 3D view showing the main active components of the optical camera. Center: the real object mounted inside the optical camera body. Right: the optical camera mounted on ASTRI-1.

M1 actuators Figure 7. Left: the engineering GUI for the management of the actuators of M1. Right: the same but for M2 actuators

ASTRI heritage in CTA #3: know-how

Structure is very stiff

Optical alignment performed by removable actuators + optical camera

Alignment

ASTRI heritage in CTA #3: know-how

Alignment

ASTRI heritage in CTA #3: know-how

Safety of the parking

ASTRI heritage in CTA #3: know-how

IACTs are light concentrators with no domes

- Sunlight concentration simulation
- Study of the areas above energy density safety limit (> 0.5-0.2 W/cm^2)
- Parking position

CTA-SST updates - The 2° LHAASO Simposium, 21 -24 March 2025, Hong Kong

fire accident is a real issue

Safety of the parking

ASTRI heritage 3: know-how

fire accident is a real issue

IACTs are light concentrators with no domes

- Sunlight concentration simulation
- Study of the areas above energy density safety limit (> 0.5-0.2 W/cm^2)
- Parking position

CTA-SST updates - The 2° LHAASO Simposium, 21 -24 March 2025, Hong Kong

Safety of the parking

ASTRI heritage in CTA #3: know-how

IACTs are light concentrators with no domes

fire accident is a real issue

Sunlight concentration simulation

Study or the areas above energy density safety limit (> 0.5-0.2 W/cm^2)

21 December

Conclusion

- CTA-SST baseline based on ASTRI-HORN+CHEC-S camera
- CTAO ERIC establishment and PRNN boosted the activities
- ASTRI structure upgrades already tested for ASTRI Array
- Strong ASTRI know-how heritage

Conclusion

- CTA-SST baseline based on ASTRI-HORN+CHEC-S camera
- CTAO ERIC establishment and PRNN boosted the activities
- ASTRI structure upgrades already tested for ASTRI Array
- Strong ASTRI know-how heritage

10 Opto-mechanical structure will be completed within 2025

Thanks for your attention!