Second LHAASO Symposium, Hong Kong, 2025

The displaced TeV signal of Terzan 5 and implications for CR. transport

Roland Crocker

Australian National University

Co-authors + publication details

Teraelectronvolt gamma-ray emission near globular cluster Terzan 5 as a probe of cosmic ray transport

Krumholz, Crocker, Bahramian & Bordas, Nature Astronomy 8, 1284–1293 (2024)

Nomenclature

- * "Ter 5" = Terzan 5
- * "GC" = Globular Cluster
- * "MSP" = millisecond pulsar

- * One of the Milky Way's most massive GCs
- * Largest (radio identified) MSP population of any GC
- * Brightest gamma-ray (GeV band) GC
- Located in the inner Galaxy, only 200 pc above plane; one of the Galactic bulge GCs

Terzan 5 as high energy source

- About 30 Galactic MSPs detected in ~GeV band with *Fermi* data
- Terzan 5, uniquely amongst GCs, detected in the TeV band by HESS (Abramowski+2011)
- The Terzan 5 associated TeV source is semi-resolved and extended
- BUT the centroid of the extended TeV emission is displaced off GC centre (where the MSPs concentrate) by ~8 pc

Is the TeV source *really* associated to Ter 5?

- HESS collab. (Abramowski+) 2011 calculate the chance overlap probability as ~10⁻⁴
- * The GeV and TeV spectral data points match well

Spectrum Ter 5

Spectrum Ter 5

Is the TeV source really associated to Ter 5?

- Abramowski+2011 calculate the chance overlap probability as ~10⁻⁴
- * The GeV and TeV spectral data points match well

...*working hypothesis*: the TeV source is associated to Ter 5

Spectrum well fit as curvature radiation + inverse Compton

First Mystery: why the displacement?

 Lightfield energy density and density of MSP sources should peak in the centre of the GC, so why doesn't the TeV surface brightness peak here?

Broad Scenario

- * Following Bednarek & Sobczak 2014, Bednarek+ 2016:
- * Individual MSP (relativistic pair) winds aggregate into a single, global wind off the GC
- The GC is moving at ≥ 100 km/s with respect to the ISM;
 this motion is both super-sonic and super-Alfvenic
- * ⇒Expect the analogue of a 'giant' bow-shock pulsar wind nebula: a (global) termination shock nested inside a bow shock and a magnetotail

Stand-off distance to contact discontinuity

$$R_{
m SO} = 0.35~{
m pc}~igg(rac{\dot{E}_{
m wind,37}}{{
m n_{
m H,-1}}}igg)^{1/2} (v_{
m Ter5,2})^{-1}$$

- * $R_{SO} \ll R_{offset} \sim 7 \text{ pc}$
- * Why doesn't the TeV centroid correspond to the acceleration region?

Why the displacement?

- * A cosmic ray transport effect?
- Point: the TeV+ radiation is produced by CR e[±] with energies > 10 TeV, or Lorentz gamma factors > 10⁷; if e[±] are not moving in our direction, we do not see the radiation they emit
- * The GC is moving super-sonically through the disk ISM
- * It has a bow shock and a magnetotail in the direction opposite its motion in the local ISM gas rest frame

Numerical modelling with CRIPTIC

- * Non-dimensionalise the transport equation which includes a pitch angle diffusion term (energy independent for simplicity)
- * CRIPTIC (Krumholz+2022) transforms the PDE into an Ito stochastic ODE describing the evolution of sample CR packets
- CRIPTIC propagates the packets over a trajectory in the 3D configuration space = (1D position, magnitude momentum, pitch angle)
- * The CR distribution function is found from a kernel density estimate over the ensemble of trajectories

 $q = \frac{p}{p_0}$

p₀: momentum
where (synchrotron
 loss time) =
 (pitch angle
 scattering time)

 $\zeta = (K_{\mu}/c)z$

 $q = \frac{p}{p_0}$

p₀: momentum
where (synchrotron
 loss time) =
 (pitch angle
 scattering time)

[The width of the profile is also a good match to the HESS observations.]

* good fits require pitch angle scattering coefficient:

$$K_{\mu} = 1.1^{+1.5}_{-0.9} \times 10^{-10} \,\mathrm{s}^{-1}$$
 ... i.e., $t_{\text{pitch}} \sim 300 \,\mathrm{yr}$

Implies spatial diffusion coefficient:

$$K_x = c^2/6K_\mu = 1.4^{+5.5}_{-0.8} \times 10^{30} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$$

* We can also determine that

$$B = 110^{+80}_{-40} \,\mu\text{G}$$

Results consistent with self-confinement

The measured pitch-angle scattering rate is consistent with that expected from Alfven waves driven by (resonant) streaming of *the CR electrons themselves*:

$$K_{\mu} = 1.1^{+1.5}_{-0.9} \times 10^{-10} \,\mathrm{s}^{-1} \longleftrightarrow \Gamma_{0} = 7.2^{+56}_{-6.5} \times 10^{-10} \,\mathrm{s}^{-1}$$

$$\Gamma_{0} = 7.2^{+56}_{-6.5} \times 10^{-10} \,\mathrm{s}^{-1}$$

1LHAASO J1740+0948u: another example?

- Bow-shock pulsar wind nebula with magnetotail seen in X-ray
- Offset gamma-ray source in direction of tail, ~5 pc from pulsar, spin-down power: ~2e35 erg/s

Cao+2025, arXiv:2502.15447

- Would need a similar pitch angle scattering rate as Ter5, ~1e-10/s, but at higher energies, ~>100 TeV
- Might be possible given reduced cross-section of tail
 => larger particle density

 $\Gamma_{\rm si}(>p) \approx \Omega_{\rm B} \frac{m_{\rm e}}{m_{\rm p}} \frac{n_{\rm CR}(>p)}{n_{\rm H}} \frac{v_{\rm str}(>p)}{v_{\rm A}},$

Summary

- The displaced TeV source associated to Terzan 5 may reveal pitch-angle isotropisation *in progress*
- * This mechanism may operate in other objects

Extra Slides

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2 \right) K_{\mu} \frac{\partial f}{\partial \mu} \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(1 - \mu^2 \right) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[(1 - \mu^2) K_{\mu} \frac{\partial f}{\partial \mu} \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 (1 - \mu^2) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

$$\mu = \cos \theta$$

Pitch angle diffusion

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2 \right) K_{\mu} \frac{\partial f}{\partial \mu} \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(1 - \mu^2 \right) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

 $\mu \stackrel{\prime}{=} \cos \theta$

Pitch angle diffusion

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2 \left(K_{\mu} \frac{\partial f}{\partial \mu} \right) \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(1 - \mu^2 \right) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

 $\mu \stackrel{\prime}{=} \cos \theta$

Pitch angle diffusion

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2 \right) K_{\mu} \frac{\partial f}{\partial \mu} \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(1 - \mu^2 \right) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

 $\mu \stackrel{\prime}{=} \cos \theta$

Continuous momentum loss (synchrotron)

Pitch angle diffusion

 $\mu \stackrel{\prime}{=} \cos \theta$

$$\frac{\partial f}{\partial t} = -\mu c \frac{\partial f}{\partial z} + \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2 \right) K_{\mu} \frac{\partial f}{\partial \mu} \right] + \frac{m_e c}{t_{c,0}} \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(1 - \mu^2 \right) \left(\frac{p}{m_e c} \right)^2 f \right] + \dot{N} \frac{dn}{dp} \delta(z) \Theta(\mu - \mu_0),$$

Continuous momentum loss Source term

Energetics?

- * $L_{curv} \sim 5.10^{35} \text{ erg/s}$
- * $L_{IC} \sim 5 . 10^{34} \text{ erg/s}$
- * $\dot{E}_{
 m s.d.} \gtrsim 10^{37} \ {
 m erg/s}$...aggregated spin-down power 21 MSPs

Energetics?

- * $L_{curv} \sim 5.10^{35} \text{ erg/s}$
- * $L_{IC} \sim 5 . 10^{34} \text{ erg/s}$
- * $\dot{E}_{
 m s.d.} \gtrsim 10^{37}~
 m erg/s$...aggregated spin-down power 21 MSPs

Geometry

Corner plot

Marginal posteriors for model parameters

Quantity	Unit	Percentiles				
		2.28	15.89	50	84.13	97.72
$\chi^2_{ m red}$	-	1.71	1.96	2.14	2.42	2.89
$\log K_{\mu}$	s^{-1}	-10.66	-10.44	-9.97	-9.70	-9.59
$\log p_{ m eq}$	GeV/c	2.34	2.60	3.40	3.87	4.14
$\log p_{ m cut}$	GeV/c	3.62	4.07	5.00	6.21	6.88
k_p	-	-2.11	-1.81	-1.51	-0.95	-0.22
μ_0	-	0.74	0.80	0.86	0.95	0.99
$\mu_{ m obs}$	-	-0.06	0.24	0.54	0.71	0.88
$\log B$	$\mu \mathbf{G}$	1.82	1.91	2.03	2.19	2.27
$\log L$	$erg s^{-1}$	36.59	36.89	37.39	37.83	37.98
$\log \Gamma_0$	s^{-1}	-10.18	-9.71	-9.14	-8.51	-8.20
$\log E_{ m sy}$	keV	-3.48	-2.93	-1.42	-0.55	-0.11

X-ray synchrotron?

Extended Data Figure 3 | Model-predicted synchrotron spectrum. The blue line shows the median synchrotron spectrum as a function of photon energy E_{γ} predicted by our best-fitting model, and the shaded blue bands around it show the 68% and 95% confidence intervals. The quantity shown includes the effects of interstellar absorption between Terzan 5 and the Sun, assuming a hydrogen column²⁸ $N_{\rm H} = 2 \times 10^{22} \,{\rm cm}^{-2}$; the sharp features visible below 1 keV correspond to absorption edges. The black dashed line is an approximate limit corresponding to $L_X = 4\pi d_{\rm Ter5}^2 E_{\gamma}^2 (d\Phi_{\gamma}/dE_{\gamma}) = 2 \times 10^{33} \,{\rm erg s}^{-1}$, the X-ray luminosity estimated by ref.²⁸.

Emission from acceleration region?

$$L_{\rm acc} pprox rac{E_e}{t_{
m IC}} pprox rac{t_{
m esc}}{t_{
m IC}} L_{
m CR}$$

$$t_{\rm IC} = \frac{3m_ec}{4\gamma\sigma_T a_R T_{\rm CMB}^4}$$

$$t_{
m esc} pprox rac{R_{
m acc}^2}{\eta K_{
m Bohm}} = rac{3eBR_{
m acc}^2}{\eta \gamma m_e c^3}$$

$$R_{\rm acc} = \xi \frac{\gamma_{\rm cut} m_e c^2}{eB} = 1.1 \times 10^{-3} p_{\rm cut} B_2^{-1} \xi \, {\rm pc},$$

$$L_{\rm acc} \approx \frac{4\sigma_T a_R T_{\rm CMB}^4 \gamma_{\rm cut}^2 \xi^2}{eB\eta} L_{\rm CR} = 8.9 \times 10^{-7} p_{\rm cut,5}^2 B_2^{-1} \frac{\xi^2}{\eta} L_{\rm CR}.$$

This implies a γ -ray flux from the accelerator region that is a factor of ~ 100 smaller than the measured energy-integrated flux of the displaced γ -ray emission observed by HESS in the TeV band

Maximum energy?

*
$$E_{e,IC} \sim 100 \text{ TeV}$$
 (Thomson regime off CMB)
* $E_{e,max} \sim \frac{70 \text{ TeV}}{\eta} \sqrt{f_B \dot{E}_{wind,37} v_{T5,2}}$ [Bykov+2017]

Maximum energy?

*
$$E_{e,IC} \sim 100 \text{ TeV}$$
 (Thomson regime off CMB)
* $E_{e,\max} \sim \frac{70 \text{ TeV}}{\eta} \sqrt{f_B \dot{E}_{wind,37} v_{T5,2}}$ [Bykov+2017]
 $v_{T5} \equiv v_{T5,2} \ 100 \text{ km/s}$
 $\dot{E}_{wind} \equiv \dot{E}_{wind,37} \ 10^{37} \text{ erg/s}$

S

Maximum energy?

*
$$E_{e,IC} \sim 100 \text{ TeV}$$
 (Thomson regime off CMB)
* $E_{e,max} \sim \frac{70 \text{ TeV}}{\eta} \sqrt{f_B \dot{E}_{wind,37} v_{T5,2}}$ [Bykov+2017]

V

Characteristic magnetic field

$B \approx v_{\rm c} \sqrt{4\pi \mu_{\rm H} n_{\rm H}} = 54(v_{\rm c}/100 \,{\rm km \, s^{-1}})(n_{\rm H}/1 \,{\rm cm^{-3}})^{1/2} \mu {\rm G}$

