

CR PROPAGATION IN THE GALAXY: INSIGHTS FROM TeV HALOS AND THE DIFFUSE γ-RAY EMISSION

Gwenael Giacinti (贾鸿宇)

Collaborators include Yiwei Bao, Samy Kaci, and Yuan Li

Tsung-Dao Lee Institute & Shanghai Jiao Tong University

1 – TeV halos as a probe of CR propagation in the ISM

Giacinti et al., A&A 636, A113 (2020), Lopez-Coto & Giacinti, MNRAS 479, 4526 (2018)

HAWC observ. of Geminga & Monogem

IC from ~ 100 TeV e⁻

Predicted γ-ray surface brightness

Kolmogorov, B_{rms} =3 µG

Large coherence lengths (> 10 pc) ruled out (Too asymmetric)

Lopez-Coto & Giacinti, MNRAS 479, 4526 (2018) [arXiv:1712.04373]

Li, Giacinti & Lopez-Coto, To be submitted (2025)

Yuan Li → POSTER

Best fits around L_c=1-5 pc, B_{rms} =3-4 μG

Kolmogorov, L_c=1 pc, =3 μG B_{rms}

10

0.00 X

Angle [deg]

Li, Giacinti & Lopez-Coto, To be submitted (2025)

Asymmetry results ($B_{regular} = 0$):

Bohm diffusion, $L_{max} = 5 \text{ pc}$ T 1.0 20 percent boundary 68 percent boundary 39 percent boundary --- 10 percent boundary 95 percent boundary Inject Position 0.01 -0.8 0.6 Counts ≻ 0.00 -0.4 0.2 -0.01 -L 0.0 -0.01 0.01 0.00 X

Li, Giacinti & Lopez-Coto, To be submitted (2025)

Appearance of "mirage" sources:

Yiwei Bao

The second source is a "**mirage**", where the magnetic field bends inwards /outwards, wrt/ observer.

(*Prediction: X-ray emission at the mirage source fainter than that at the connecting structure.*)

Bao, Giacinti, Liu, Zhang & Chen, arXiv:2407.02478 Bao, Liu, Giacinti, Zhang & Chen, arXiv:2407.02829

Could explain LHAASO observations

LHAASO Collaboration, ApJS 271, 25 (2024)

Many extended sources w/ irregular shapes:

Large offsets between sources and center

 Table 4. 1LHAASO sources associated pulsars

Source name	PSR name	$\operatorname{Sep.}(^{\circ})$	d (kpc)	τ_c (kyr)	$\dot{E}~({\rm erg~s^{-1}})$	P_c	Identified type in TeVCat
1LHAASO J0007+7303u	PSR J0007+7303	0.05	1.40	14	4.5e + 35	7.3e-05	PWN
1LHAASO J0216+4237u	PSR J0218 + 4232	0.33	3.15	476000	2.4e + 35	3.6e-03	
1LHAASO J0249+6022	PSR J0248 + 6021	0.16	2.00	62	2.1e + 35	1.5e-03	
1LHAASO J0359+5406	PSR J0359 + 5414	0.15	-	75	1.3e + 36	7.2e-04	
1LHAASO J0534+2200u	PSR J0534+2200	0.01	2.00	1	4.5e + 38	3.2e-06	PWN
1LHAASO J0542+2311u	PSR J0543+2329	0.30	1.56	253	4.1e + 34	8.3e-03	
1LHAASO J0622+3754	PSR J0622+3749	0.09	-	208	2.7e + 34	2.5e-04	PWN/TeV Halo
1LHAASO J0631+1040	PSR J0631+1037	0.11	2.10	44	1.7e + 35	3.5e-04	PWN
1LHAASO J0634+1741u	PSR J0633+1746	0.12	0.19	342	3.3e + 34	1.3e-03	PWN/TeV Halo
1LHAASO J0635+0619	PSR J0633 + 0632	0.39	1.35	59	1.2e + 35	9.4e-03	
1LHAASO 11740±09481	PSR 11740+1000	0.21	1 23	114	230 ± 35	1 40-03	

No counterparts?

2 – Diffuse VHE γ-ray emission

Diffuse from AS-γ (400 TeV – 1 PeV)

AS-γ Collaboration, arXiv:2104.05181

Diffuse from LHAASO (10 TeV – 1 PeV)

 → Emission in Galactic longitude does not follow target gas...
 => Stochasticity of CR injection?

Diffuse VHE γ -ray emission from discrete sources

SIMULATION:

Isotropic and homogeneous diffusion

$$D(E) = 10^{28} D_{28} \left(\frac{R}{3GV}\right)^{\delta} cm^2/s$$
$$D_{28} = 1.33 \times \frac{H}{kpc}$$

2) Time-dependent (mimics self-confinement): 1/100 x D around sources for 10 kyr.

Kaci & Giacinti, JCAP 01, 049 (2025)

Samy Kaci

Cosmic-ray flux at Earth and B/C ratio satisfied

Discrete injection of cosmic rays

Clumps in the gamma-ray flux

Kaci & Giacinti, JCAP 01, 049 (2025)

Vernetto

ò 20 1 (°)

40

-60 -40 -20

Diffuse gamma-ray flux clumpy at VHE

Slide from Samy Kaci

Sky Maps and sources (case 1)

Slide from Samy Kaci

Kaci & Giacinti, JCAP 01, 049 (2025)

Sky Maps and sources (case 2)

Slide from Samy Kaci

Kaci & Giacinti, JCAP 01, 049 (2025)

Jamma-ray flux (

Number of detectable sources

- Two diffusion regimes lead to different results concerning the detectability of sources.
- Homogeneous diffusion strongly limits the detectability of sources.
- Some parts of the space paramters can already be excluded.

Impact of unresolved sources (PWNe)

Kaci, Giacinti, Semikoz, ApJ Lett. 975, L6 (2024)

- Use ATNF catalog and complete it.
 - Generate a VHE gamma-ray emission similar to that measured by KM2A for each source.
- Constrain the gamma-ray emission to be below KM2A sensitivity.
- Use the same masks as LHAASO.
- Compare the contribution of unresolved sources to the total flux measured by KM2A.

Upper Limits unresolved PWNe/halos

Kaci, Giacinti, Semikoz, ApJ Lett. 975, L6 (2024)

Microquasars as Galactic super-PeVatrons

Kaci, Giacinti et al., To be submitted (2025)

→ POSTER 8

Microquasars: inj. -2 spectrum, cutoff at 10 PeV, 100 kyr lifetime, 0.1/kyr rate, power 10³⁹⁻⁴⁰ erg/s.

(Standard/SNR sources: -2.7 Power-law & exponential cutoff at 150TeV.)

-Up: Lower limit by excluding the existence of any active source within 4 kpc in the last 500 kyr.

Down: No source younger than 100 kyr within
 2.2 kpc. Only objects reported by BlackCat at
 r < 2.2 kpc, in the FoV of LHAASO and no
 detection by LHAASO.

 $\rightarrow\,$ Fits the knee and the 10TeV bump.

Microquasars as Galactic super-PeVatrons

Kaci, Giacinti et al., To be submitted (2025)

→ POSTER 8

On average 3-4 sources detectable:

molecular clouds similar to that around SS433 (uniform sphere with r = 20pc and $n=30cm^{-3}$)

Contribution to the diffuse emission:

Conclusions & Perspectives

- \rightarrow TeV halos and diffuse γ -ray emission constrain CR propagation & sources:
- → Best fit parameters for Geminga. LHAASO will help refine them. Inner asymmetries can help disentangle between Kolmogorov (slightly favored) and Bohm,
- \rightarrow "Mirage" sources: Could explain some LHAASO sources.
- → New code for stochastic CR injection in the Galaxy: Clumpy diffuse background at VHE => LHAASO constraints on PeVatron frequency / CR propagation,
- \rightarrow **Unresolved PWNe/halos**: Minor contribution to LHAASO diffuse emission at > a few 10 TeV,
- \rightarrow ~ 10 powerful **microquasars** can fit the CR spectrum and LHAASO diffuse emission.